PRELIMINARY SITE INVESTIGATION (PSI)

FELICITY DR, MONALTRIE, NEW SOUTH WALES

PREPARED FOR:

Sewak Pty Ltd 20 King George Dr, Lismore, NSW 2480

PREPARED BY:

Mr. Dane Egelton Contaminated Site Investigation Australia Pty Ltd PO Box 389, Alstonville NSW 2477

9 October 2020

REVISION HISTORY:

Revision	Description	Distributed to	Date
Original	PSI Report	Mr Bill Roberts of Sewak	9 Oct 2020
Original	PSI Report	Mr Scott Roberts of Ardill Payne	9 Oct 2020
Rev1	PSI Report	Mr Scott Roberts of Ardill Payne	16 November 2020

Table of Contents

1	Intr	oduction	6
	1.1	Objectives	6
	1.2	Scope of Works	6
2	Site	Information	7
	2.1	Site Identification	7
	2.2	Regional Setting	7
	2.3	Geology / Soils	7
	2.4	Site Visit and Observations	8
3	Hist	orical Information	10
	3.1	Title Search	10
	3.2	Aerial Photography	10
	3.3	Cattle Dip Search Results	11
4	Con	taminants	11
	4.1	Possible Sources of Contamination	11
	4.2	Contaminants of Potential Concern	11
5	Gui	delines & Criteria	11
	5.1	Ecological Criteria	12
	5.2	Human Health Criteria	12
	5.3	Data Quality Objectives	13
	5.4	Data Quality indicators	15
	5.5	Field Data QA/QC Acceptance Criteria	16
	5.6	Laboratory QA/QC	16
	5.7	Transporting Samples	16
	5.8	Sampling Rationale	17
6	Con	ceptual Site Model (CSM)	17
7	Res	ults	19
	7.1	Discussion	19
	7.2	QA/QC	20
8	Con	cluding Comments	20
	8.1	Unexpected Finds	21
9	Lim	itations	21

APPENDIX 1 – FIGURES

Figure 1: Site Layout and Local Setting Figure 2: Proposed Development and Sample Locations Figure 3: 1958 Aerial Photo Figure 4: 1971 Aerial Photo Figure 5: 1987 Aerial Photo Figure 6: 1991 Aerial Photograph Figure 7: 1997 Aerial Photograph

APPENDIX 2 – LABORATORY REPORTS

APPENDIX 3 – HISTORICAL TITLE SEARCHES

ABBREVIATIONS

AHD	Australian Height Datum					
ANZECC	Australian and New Zealand Environment and Conservation Council					
AS	Australian Standard					
BGS	Below Ground Surface					
ВН	Bore Hole					
BTEXN	Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene					
BTOC	Below Top of Casing					
C ₆ -C ₃₆	Hydrocarbon chain length fraction					
COPC	Contaminants of Potential Concern					
CSI Aus	Contaminated Site Investigations Australia					
EPA	Environment Protection Authority					
ESA	Environmental Site Assessment					
GPR	Ground Penetrating Radar					
HDPE	High Density Polyethylene					
HIL	Health Investigation Level					
HSL	Health Screening Level					
IP	Interface Probe					
LNAPL	Light Non-Aqueous Phase Liquid					
MAH	Monocyclic Aromatic Hydrocarbon					
NATA	National Association of Testing Authorities					
NEPC	National Environment Protection Council					
NEPM	National Environment Protection Measure					
NHMRC	National Health and Medical Research Council					
PAH	Polycyclic Aromatic Hydrocarbon					
РСВ	Polychlorinated Biphenyl					
PID	Photoionisation Detector					
RPD	Relative Percentage Difference					
QA	Quality Assurance					
QC	Quality Control					
RAP	Remediation Action Plan					
SAQP	Sampling Analysis and Quality Plan					
SVB	Soil Vapour Bore					
TDS	Total Dissolved Solid					
ТОС	Top of Casing					
ТРН	Total Petroleum Hydrocarbon					
TRH	Total Recoverable Hydrocarbon					
USCS	Unified Soil Classification System					
UST	Underground Storage Tank					
VOC	Volatile Organic Compound					
XRF	X-Ray Fluorescence Analyser					

1 Introduction

Contaminated Site Investigations Australia Pty Ltd (CSI Aus) was commissioned by Ardill Payne and Partners Pty Ltd (on behalf of the site owner Mr. Bill Roberts of Sewak P/L), to conduct a preliminary site investigation (PSI) at the rural property, located at the end of Felicity Drive, Monaltrie, New South Wales (the site).

The site is currently vacant rural land and the site owners intend to subdivide the land into 30 residential lots. The current zoning across the site is RU1, with the proposed rezoning to R1. The PSI investigation is limited to the elevated portion of the site which is to be developed.

The proposed sub-division of the site has triggered the need for the PSI under State Environmental Planning Policy No. 55 Remediation of Land (SEPP 55). This report pertains to the portion of the Lot that is proposed for a residential subdivision only.

1.1 Objectives

The objective of the PSI is to identify potential contamination of surface soils or potentially contaminating historical activities at the site and make an assessment of the sites' suitability for residential use, or if further investigation is required. This objective will be met via desktop research of government sources, a site visit and walk-over, surface soil sampling and subsequent laboratory analysis.

1.2 Scope of Works

The following scope of works was undertaken by CSI Aus, in accordance with NSW EPA guidelines and Lismore Councils specifications:

- Desktop assessment of site location, setting and historical building and development applications;
- Review of available historical aerial photography and historical title searches;
- Site visit and walk-over (see photos in report);
- Collection of eleven primary samples to assess for contaminants of potential concern (COPC);
- Chain of Custody documentation;
- Analysis of samples via a NATA accredited laboratory; and
- Preparation of this PSI report.

2 Site Information

2.1 Site Identification

The site is located at an elevated section of range south of East Lismore. General site information is presented in Table 1 below, and a Site Layout Plan is included as Figure 1, Appendix A.

	Table 1:	General	Site	Information
--	----------	---------	------	-------------

	Table 1 General Site Information					
Site Address:	End of Felicity Drive East Lismore which is the suburb boundary to Monaltrie (south of East Lismore)					
Land Description:	Vacant Rural land					
Site Area:	Approximately 4.8ha is the focus area of this PSI. The whole lot is approximately 62 ha					
Site Owner:	Mr Bill Roberts					
Municipality	Lismore					
Formal ID:	Lot 3 in DP 805680					
Current Zoning:	RU1 Primary Production					
Current Site Use:	Vacant with seasonal cattle agistment					
Proposed Site Use:	Residential subdivision					
Adjoining Land Uses:	 North: East Lismore residential housing development East: Wilson Nature Reserve and Council depot South: Lismore rainforest botanic gardens and Lismore Community recycling centre West: Cattle farming and the Wilson River 					

2.2 Regional Setting

The local landscape is high rolling hills and steep waning hills. The subdivision portion of the site is located at approximately 120 m to 135m AHD and slopes to the west, south and east in accordance with the local topography. The nearest surface water body is the Wilson River located approximately 1km west of the site.

2.3 Geology / Soils

A review of the NSW Government online mapping service indicates that the site is underlain by the Lismore basalts which are of the Tertiary Period. Only minor Basalt outcrops were observed during the site visit.

The dominant soil type for the region is a dark reddish-brown friable clay loam topsoil (Georgica). The total soil depth generally ranges from 0.5 to 1m. The ridgetop is considered to be low probability for potential acid sulphate soils.

The site soils were relatively uniform in lithology and consisted of a firm dark reddish-brown clay loam. Surface vegetation (grass) was removed to expose the soils for sampling. Shallow soils were high in organic material - grass rootlets.

A total of eleven soil samples and two duplicates were collected from surface soils and submitted for analysis by a NATA accredited laboratory. See Appendix B for laboratory reports, and Figure 1 and 2 for site layout and sample locations.

PHOTOGRAPH 1 AND 2

Left: Basalt outcrop Right: Soil sample location EL4

2.4 Site Visit and Observations

A site visit and walk-over was conducted by Dane Egelton of CSI Aus on 19 August and again on 7 September 2020. At the entrance to the site, two farm sheds were observed to still be present and housed a tractor, a car and some macadamia farming equipment. An above ground diesel tank (800L capacity) was noted to be in this same location which is just inside of the proposed residential development boundary. The soils around the base of the tank were inspected for staining and odours and two samples were collected for laboratory analysis. The tank was in reasonable condition and there was <u>no</u> observable evidence of significant spills or poorly maintained infrastructure. See results section for lab data.

The entire site had tall grass and had not been cattle farmed for a number of months prior to the visit. The majority of the site was cleared of original native vegetation and the previous macadamia plantation, with only sparse mature vegetation remaining along fence lines, and the steep western ridge slope.

There were no visual or olfactory indicators of industrial activities that would potentially cause contamination of the site soils or underlying groundwater. Note; groundwater was not assessed during this PSI because there was no evidence to suggest it was warranted.

Asbestos containing materials were not observed, and the site surface was free of any unnatural materials or imported fill (with the exception of sandstone blocks at the site entry).

PHOTOGRAPH 3

CURRENT SITE LAYOUT AND SETTING – VIEW FROM RIDGETOP LOOKING SOUTH-EAST

PHOTOGRAPH 4 SHED AND ABOVE GROUND FUEL TANK

3 Historical Information

3.1 Title Search

Limited information on previous site use and ownership was obtained from the NSW land registry services. See summary table below and Appendix 3 for land title documents.

Historical title searches indicate that the current Lot 3/805680 was formally three or more separate lots. These former titles were: Crown land, 1/728271, 21/793350, Vol 2073 Fol 107, Vol2933 Fol 12, Vol 3376 Fol 185, Vol 1147 Fol 227, Vol 5251 Fol 9 and 121/787624.

There is small gap in the available information between 1953 and 1974 and anecdotal evidence suggests that the owner was George Davis who sold it to the current owners - the Roberts family. The property has only been used for farming (cattle) in the past (prior to macadamia farming).

Table 2 Historical Title Search					
Date	Information				
15/11/1894	Land Granted to John Sheehan (40 acre portion of the current Lot)				
30/8/1904	Land registered to Johns Widow – Bridget Sheehan				
21/11/1912	Land Registered to Mary Catherine Collins				
15/9/1916	Land registered to Timothy Joseph Collins				
4/12/1922	Land Registered to David Kirk Martin				
16/4/1923	Land Transferred to the Bank of New South Wales				
19/6/1933	Land leased to Elsie May Anderson				
22/9/1936	Discharge of mortgage (David Kirk Martin)				
30/6/1941	Land title transferred to Thomas John Gahan (Vol 1147 Fol 227 and Vol 3376 Fol 185 merged to become a 120 acre Lot				
18/3/1953	Land title transferred to Joseph Bede Gahan				
?	Anecdotal information suggests that George Davis became the owner of the property				
~ 1974	Land registered to Alexander Cyffen Roberts				
26/6/1974	Grant of land as compensation for land resumed for a public road (160m ²)				
2010?	Title transferred to Sewak P/L (Bill Roberts and family)				

3.2 Aerial Photography

The NSW Government spatial services were contacted to review historical aerial photographs of the site. From the available photographs, five were obtained for the years 1958, 1971, 1987, 1991 and 1997 to assess the land use activities that may be visually obvious. These photos are presented in Appendix 1, Figure's 3 to 7.

In summary, the land use and layout has not changed significantly between the 1958 aerial photograph and the site walk over conducted in 2020. Apart from the construction of sheds associated with macadamia farming in the 1980's the property has remained relatively undeveloped since it was crown land.

3.3 Cattle Dip Search Results

No cattle dips or similar structures were observed during site visit. The Department of Primary industries online services were viewed to identify the presence of former cattle dip's on the site or nearby. No cattle dips were identified onsite or upgradient nearby. Lismore Councils online mapping services did identify a cattle dip site approximately 800m south and down gradient on Lot 2 DP 701097.

Therefore this site is not considered to be a risk of residual cattle dip contaminants.

4 Contaminants

4.1 Possible Sources of Contamination

With the sites' previous use as cattle farming and macadamia farming the following potential sources of contamination have been identified.

- Agriculture
- Chemical storage pesticides, fuels etc
- Historically imported fill material

4.2 Contaminants of Potential Concern

Based on the review of the sites' history, contaminants of potential concern are considered to include:

- Pesticides (macadamia farming)
- Total Recoverable hydrocarbons (TRH) (Fuel Storage onsite in an AST).
- Heavy Metals/Metalloids (Arsenic, Cadmium, Chromium, Copper, Mercury, Nickel, Lead and Zinc) common contaminants on human modified environments.

Following a desktop review of site history and a site visit, there are no impacts expected on groundwater at the site resulting from previous use, and therefore, soil vapour and groundwater were not investigated (or considered necessary) as part of this PSI.

5 Guidelines & Criteria

The soil analytical results have been assessed with regard to the suitability of the site for the proposed residential development. The following receptors have been identified as requiring protection:

- Human Health Future occupants of the residential development
- Maintenance of Modified Ecosystems

The adopted guidelines associated with the protection of each identified receptor are detailed in the following sections. The guidelines have been sourced from the National Environment Protection Measure - Assessment of Site Contamination, as amended in 2013 (NEPM). The NEPM presents a range of guidelines applicable for the protection of receptors associated with land uses.

It is emphasised within the NEPM that the purpose of the guidelines is to provide a basis whereby the chemical profile for a site may be screened to identify conditions that may warrant further consideration of risks to human health or the environment. Therefore, the guidelines do not represent values above which remedial action or other site management measure would be required. Rather, the adopted guidelines provide an appropriate basis for identifying conditions which do not warrant any further consideration.

5.1 Ecological Criteria

The NEPM defines Ecological Investigation Levels (EILs) based on land use and soil properties (pH, cation exchange capacity, and clay content). As no assessment of soil properties has been undertaken at the site, the most conservative criteria have been adopted for the land use setting 'Residential / Public Open Space'. In addition to the EILs, the NEPM defines Ecological Screening Levels (ESLs) for hydrocarbons, based on the land use and soil type. The selected ESLs have been adopted for the land use 'Urban Residential / Public Open Space'. The selected soil texture 'fine' has been adopted as the site uppermost geology consists predominantly of sandy clay.

5.2 Human Health Criteria

The NEPM provides Health Investigation Levels (HILs) and Health Screening Levels (HSLs) for a range of different land uses and soil types. The human health criteria for the site have been adopted for the land use setting 'Residential A', which includes garden accessible soil for home grown produce of <10% fruit and vegetable intake (no poultry). The selected soil texture 'clay' has been adopted as the site uppermost geology consists predominantly of sandy clay.

TABLE 3 Assessment Criteria							
Element / Compound	Health-based Investigation levels (mg/kg)						
1,2,3	Residential A	Residential B	Recreational C	Commercial / Industrial D			
		Metals					
Arsenic	100	500	300	3,000			
Cadmium	20	150	90	900			
Chromium (VI)	100	500	300	3,600			
Copper	6,000	30,000	17,000	240,000			
Lead	300	1,200	600	1,500			
Nickel	400	1,200	1,200	6,000			
Zinc	7,400	60,000	30,000	40,000			
Mercury	40	120	80	730			
Organochlorine Pesticides							
DDT+DDE+DDD	240	600	400	3600			
Aldrin & Dieldrin	6	10	10	45			
Chlordane	50	90	70	530			
Endosulfan	270	400	340	2,000			
Endrin	10	20	20	100			
Heptachlor	6	10	10	50			
НСВ	10	15	10	80			
Methoxychlor	300	500	400	2,500			
Toxaphene	20	30	30	160			
	Total F	Recoverable Hydrocarbons & I	PAHs				
F1 TRH (C6 – C10) less BTEX	45						
F2 TRH (>C10 – C16) Less Napthalene	110						

Notes: 1: NEPC (2013) – Health Screening Levels for Vapour Intrusion (HSL-A&B Low-high density residential) for Sand.
 2: CRC Care (2011) - Health Screening Levels for Vapour Intrusion. Low-high density residential) for Sand. 0.15mbgs.
 3: NEPC (2013) – Interim Health Investigation Levels. Residential Setting A. (Low density residential).

5.3 Data Quality Objectives

Data quality objectives (DQOs) were developed to define the type and quality of data required to achieve the potential soil contamination assessment and, if required, remediation investigation objectives. Development of the DQOs was based on guidelines in the US EPA *Guidance for the Data Quality Objectives Process* (2000), and

with reference to relevant guidelines published by the NSW EPA (1997 and 1998), ANZECC 2000, and NEPC 2013, which define minimum data requirements and quality control procedures.

The DQO process comprises a seven-step planning approach. Using this approach, CSI Aus has developed the sampling design for data collection activities that support the objectives of the soil investigation and facilitate decision-making. Table 4 below lists the seven steps and identifies the sections within this report that addresses those steps.

	TABLE 4 Data Quality Objectives Process
DQO Step	Discussion and Detailed description
1. Define the problem	Assessment of site history and limited soil sample data from the site proposed to be rezoned. Soil data has not previously been obtained at the site and site history indicates predominantly rural use. The potential for site contamination needs to be assessed.
2. Identify the decision	If identified COPC are detected in surface soils exceed Tier 1 or Tier 2 Risk Assessment Criteria.
	If the 95% UCL does <u>not</u> exceed Tier 1 and/or Tier 2 Risk Assessment Criteria a human health pathway is considered to not exist.
3. Identify the inputs of the decision	Correct collection of soil samples, sample preservation and use of a NATA accredited laboratory. Surface soil samples collected from five locations selected judgmentally across the site. Analysis of soil samples for 8 common heavy metals and persistent pesticides Tier 1, and if required Tier 2 Risk Assessment.
4. Define the investigation boundaries	The portion of the site that has been proposed to be developed for residential use (~4Ha).
5. Develop a decision rule – analytical approach	Acceptable limits for analytical approach are presented in Data Quality Indicators Table 5 below. The analytical method can achieve detection limits below Tier 1 Risk Assessment Criteria.
6. Specify tolerable limits on decision errors	The limits on decision errors expressed as per cent error for the investigative activities should be no greater than 10 per cent. The aggregate sampling and analysis error may be greater, but error resulting from sampling procedures or the nature of the sample matrix is not quantifiable.
	By implementing statistically valid sampling plan and adopting the 95% UCL to compare against the Tier 1 / 2 Risk Assessment Criteria we have adopted a 5% level of significance, i.e. adopting a 5% probability we will make the
	wrong decision (Type 1 / Type 2 error).
	The data must fall within the range of DQIs to be considered reliable.
7. Optimise the design for obtaining data	Presented in Sections 6 &7 of this PSI. All available resources were used to collate historical data. Physical data was obtained by soil sampling.

5.4 Data Quality indicators

Quality Assurance and Quality Control QA/QC is tested by review of data against Data Quality Indicators (DQIs) to ensure data precision, accuracy, representativeness, comparability and completeness. A summary of DQIs for samples to be collected as part of the investigation are presented in the table below:

TABLE 5 Data Quality Indicators							
Data Quality Objectives	Frequency	Data Quality Indicator					
Precision							
Duplicate samples	1 per 10 samples	RPD <50%					
	Accuracy						
Laboratory control samples	1 per day	General analytes recovery of 70–130%					
Analysis blank	1 per day	Non-detect					
Representativeness							
Samples analysed within specified holding times	Soil Samples	<30 days					
		Within specific analyte holding times					
Samples transported under COC conditions	N/A	All samples will be transported under chain of custody documentation					
Reliability of field measured data	N/A						
	Comparability						
Industry best practise for all sample media	All samples, all analytes	Experienced staff					
Consistent sampling techniques	All samples all analytes	Same staff and method for the project					
Appropriate laboratory reporting limits	All samples, all analytes	-					
	Completeness						
Appropriate sample design to meet objectives	N/A	-					

5.5 Field Data QA/QC Acceptance Criteria

For all samples, field sample QA/QC was be conducted in accordance with AS 4482.1–2005 (Australian Standard, 2005) and consist of the following:

AS 4482.1–2005 (Australian Standard, 2005) indicate an acceptable RPD range of 30-50%, and that the variation can be expected to be higher for organic analysis than inorganics, and for low concentrations of analytes.

Field and Laboratory Quality Control/Quality Assurance (QA/QC) procedures were conducted in accordance with NEPC (2013) and AS 4482.1–2005.

All soil samples were collected in new sample media jars provided by the laboratory and the soil sampling trowel was thoroughly washed between sample locations to prevent cross contamination. Samples were not composited but rather individual samples taken from each location identified in Figure 2.

The acceptance criteria for QA/QC samples are detailed in Table 5 above:

5.6 Laboratory QA/QC

- At least one analysis blank per batch
- Duplicate analysis at a rate of one per batch or one per ten samples, whichever is smaller
- Laboratory Control Samples at a rate of one per batch

The nominated laboratory must comply with the minimum QA procedures documented in Schedule B(3) in NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure and include, but not be limited to:

- Matrix spikes, and
- Surrogate Spikes

A review of SGS's quality report in Appendix 2 indicates that all QA procedures were satisfactory and no significant outliers were reported.

In the event the acceptance criteria are not met, the variation is taken into consideration and its implications assessed in regard to the context of the investigation.

5.7 Transporting Samples

Before sample transportation, appropriate methods for test specific handling requirements were reviewed. Samples were transported and delivered within documented holding times using ice bricks to preserve samples. To avoid breakages, all glass containers were well cushioned. Samples were transported under chain of custody documentation directly to the laboratory. The original chain-of-custody record accompanied the samples to the analytical laboratory, see Appendix 2.

5.8 Sampling Rationale

The desktop assessment did not identify any activities or previous site uses that would indicate the potential for significant contamination of soils or groundwater. In order to make an assessment of the sites' contamination status and suitability for residential use, eleven primary soil samples were collected and analysed. If these samples detect concentrations of the COPC above the residential criteria, further investigation would be required.

Surface soil sample locations have been randomly (EL1 to EL9) and judgementally (DAST1 & 2 and S1) selected to target the portion of the site to be developed for residential dwellings. Good site coverage has been achieved by the lateral spread of sample locations as seen in Figure 2.

As outlined in NSW government document "Consultants Reporting on Contaminated Land", where a complete site history clearly shows that activities have been non-contaminating, there are no impacts from off-site contamination sources, and observations do not indicate any potential for contamination, there may be no need for further investigation or site sampling. As part of this PSI, samples where collected as a secondary line of evidence that contamination is *not* present at the site and to confirm the hypothesis that contamination is not an issue for the proposed development.

As Outlined in the NSW EPA's "Sampling Design Guidelines" the number of samples collected should be determined by the investigator on a site-specific basis. For this PSI eleven samples have been selected to get good site coverage for making the assessment of general soil conditions, and at the same time to identify any unexpected detections of contaminants of potential concern. The soil sampling frequency data table A in these design guidelines is only to be used as a guide and is generally used on sites where contamination is likely to be present as a result of industrial activity.

6 Conceptual Site Model (CSM)

National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (NEPC 2013) identifies a conceptual site model (CSM) as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The development of a CSM is an essential part of all site assessments.

NEPC (2013) identified the essential elements of a CSM as including:

- 1. Known and potential sources of contamination and contaminants of concern including the mechanism(s) of contamination;
 - For this site the potential sources of contamination would be the above ground storage of diesel and the potential for historical use of persistent pesticides.
- 2. Potentially affected media (soil, sediment, groundwater, surface water, indoor and ambient air);
 - This would be expected to be limited to the surface soils at this site given its historical use for agriculture and *not* for industrial use.
- 3. Human and ecological receptors;

- Human receptors would be likely given that the proposed future use is residential with access to soil for home grown produce. Ecological receptors also apply as the property is bordered to the east by the Wilson Nature Reserve and also has environmental zoning in portions of the larger lot.
- 4. Potential and complete exposure pathways;
 - A complete pathway does exist for persistent pesticides in surface soils (if present).
- 5. Any potential preferential pathways for vapour migrations (if potential for vapours identified)
 - Given that volatile compounds are not a significant risk at this site (only a small above ground fuel tank), this pathway is not considered to be complete for this contaminant. This area of fuel storage was targeted to make an assessment of contamination from the fuel storage.
- 6. Data Gaps
 - Groundwater has not been assessed in this PSI due to the lack of evidence that would indicate groundwater contamination as an issue.

7 Results

The results for soil analysis have been summarised in Table 6 below. Laboratory certificate of analysis and QA/QC assessment is provided at the end of this report in Appendix 3.

Table 6 Results															
Analyte	Criteria			Concentrations in mg/kg											
	1,2,3	PQL	EL1	EL2	EL2D*	EL3	EL4	EL5	EL6	EL7	EL8	EL9	DAST1	DAST2*	S1
Arsenic	100	2	2	1	1	2	2	1	3	1	2	2	2	2	2
Cadmium	20	0.2	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	100	2	29	35	38	80	88	49	82	42	35	18	27	26	10
Copper	6,000	2	25	26	27	18	19	19	21	20	14	19	13	13	19
Lead	300	2	6	6	6	6	8	5	7	5	7	6	11	11	3
Nickel	40	0.05	6.5	7.0	7.7	8.2	11	6.6	9.9	9.2	12	7.6	9.1	8.4	29
Zinc	400	2	140	85	91	64	65	83	100	75	80	110	170	180	70
Mercury	7,400	2	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.07	0.07	0.06	<0.05	<0.05	<0.05
OCP/OPP - 37 compounds	7-260	1- 1.7	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TRH F1	45	25	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<25	<25	<25
TRH F2	110	210	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<25	<25	<25
TRH C10 – C36	-	110	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<110	<110	340
Benzene	300	0.8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	<0.1	<0.1

Notes: 1: NEPC (2013) – Health Screening Levels for Vapour Intrusion (HSL-A&B Low-high density residential) for Sand.

2: CRC Care (2011) - Health Screening Levels for Vapour Intrusion. Low-high density residential) for Sand. 0.15mbgs.

3: NEPC (2013) – Interim Health Investigation Levels. Residential Setting A. (Low density residential).

ND = Non-Detect

NT = Not tested

OCP/OPP = Organochlorine and Organophosphate Pesticides

* Duplicate samples

7.1 Discussion

As can be seen from the data summary table above, there were no exceedances of the residential criteria or the more sensitive ecological criteria and all results for the compounds tested were either non-detect (pesticides, and hydrocarbons) or significantly below the human health investigation limits (metals). The collection of further data is not warranted and the surface of the site is free of contamination in the areas sampled. Site history information also indicates that contamination is unlikely at the site.

7.2 QA/QC

CSI Aus has completed a review of the Quality Assurance (QA) steps and Quality Control (QC) results, according to the data quality objectives defined in Section 5.6 and the following documents:

- NEPC, National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council (1999).
- US EPA Guidance on Environmental Data Verification and Data Validation (2002).

This included examining holding times, laboratory accreditation, sample preservation methods, a review of field quality control sample results and a review of laboratory quality control sample results.

SGS Alexandria (Sydney), was the chosen NATA accredited laboratory for soil analysis. The primary samples identified as EL2 and DAST 1 and the duplicates were identified as ELD2 and DAST 2. As can be seen from Table 7 below, all relative percentage difference (RPD) values met the +/-50% acceptance criteria. The highest RPD value was 12.5 % for mercury with the absolute difference being only 0.1mg/kg.

TABLE 7 RPD Values						
Compound	EL2	ELD2 Dup	RPD (%)	DAST1	DAST2 Dup	RPD (%)
Arsenic	1	1	0	2	2	0
Cadmium	<0.3	<0.3	NA	<0.3	<0.3	NA
Chromium	35	38	-5.6	27	26	2.5
Copper	26	27	-2.5	13	13	0.0
Lead	6	6	0.0	11	11	0.0
Nickel	7	7.7	-6.5	9.1	8.4	5.3
Zinc	85	91	-4.6	170	180	-3.8
Mercury	0.05	0.06	-12.5	<0.05	<0.05	NA
OCP/OPP - 37 compounds	<1	<1	NA	<1	<1	NA
TRH F1	NT	NT	NA	<25	<25	NA
TRH F2	NT	NT	NA	<25	<25	NA
TRH C10 – C36	NT	NT	NA	<110	<110	NA
Benzene	NT	NT	NA	<0.1	<0.1	NA

Based on the DQI criteria being met, all data collected in this investigation is considered to be representative of site conditions at the time of sampling and satisfactory for use in this assessment.

8 Concluding Comments

CSI Aus has undertaken a Preliminary Site Investigation to assess the contamination status of the site located in Monaltrie under SEPP 55. A desktop review of available information and a site visit did *not* identify evidence of previous development or activities on the site that would suggest any potentially contaminating activities had

taken place within the area of focus. Analytical results from surface soils indicate all of the compounds tested returned concentrations that were below the adopted criteria for residential use.

Based on the sample data collected (eleven primary surface soil samples) and the absence of contamination at the site, no further investigation is deemed warranted. A review of laboratory data against the data quality indicators outlined in this report demonstrate that the data obtained in this investigation is representative and satisfactory for use in the assessment.

Therefore, the site is considered to be suitable for its intended use as a residential subdivision.

8.1 Unexpected Finds

During the construction phase of development roads, sub-terranean services infrastructure and general earthworks, *if* unexpected finds are uncovered (old pipe work, storage tanks etc) work should cease until an experienced environmental scientist can inspect the material and make an assessment of the significance for site contamination. This would include any human-made structures uncovered during development. This PSI has been limited to desk top study and minor surface soil sampling.

9 Limitations

The findings of this report are based on the objectives and scope of work outlined above. CSI Aus performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment industry. No warranties or guarantees, express or implied, are made. Subject to the scope of work, CSI Aus' assessment is limited strictly to identifying typical environmental conditions associated with the subject property and does not include evaluation of any other issues.

This report does not comment on any regulatory obligations based on the findings, for which a legal opinion should be sought. This report relates only to the objectives and scope of work stated, and does not relate to any other works undertaken for the Client.

The report and conclusions are based on the information obtained at the time of the assessment. Changes to the subsurface conditions may occur subsequent to the investigation described herein, through natural process or through the intentional or accidental addition of contaminants, and these conditions may change with space and time.

The site history, and associated uses, areas of use, and potential contaminants, were determined based on the activities described in the scope of work. Additional site history information held by the Client, regulatory authorities, or in the public domain, which was not provided to CSI Aus or was not sourced by CSI Aus under the scope of work, may identify additional uses, areas of use and/or potential contaminants. The information sources referenced have been used to determine site history and desktop information regarding local subsurface conditions. While CSI Aus has used reasonable care to avoid reliance on data and information that is inaccurate or unsuitable, CSI Aus is not able to verify the accuracy or completeness of all information and data made available.

Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history, and which may not be expected at the site. The absence of any identified hazardous or toxic materials on the

subject property should not be interpreted as a warranty or guarantee that such materials do not exist on the site. If additional certainty is required, additional site history or desktop studies, or environmental sampling and analysis, should be commissioned.

The results of this assessment are based upon site inspection and fieldwork conducted by CSI Aus personnel and information provided by the Client. Samples were collected at specific locations and should be considered to be an approximation of the condition of the sample. All conclusions regarding the property area are the professional opinions of CSI Aus personnel involved with the project, subject to the qualifications made above.

While normal assessments of data reliability have been made, CSI Aus assumes no responsibility or liability for errors in any data obtained from regulatory agencies, information from sources outside of CSI Aus. CSI Aus accepts no responsibility for any loss or damage suffered howsoever arising to any person or corporation who may use or rely on this document for a purpose other than that described above.

No part of this report may be reproduced, stored or transmitted in any form without the prior consent of CSI Aus.

APPENDIX 1 – FIGURES

Report Number	2217
Project ID	Monaltrie
Date	2 September 2020

Figure 1: Site Location and Setting

Report Number	2217	
Project ID	Monaltrie	
Date	11 September 2020	

Figure 2: Soil Sample Locations

Report Number	2216	Figure 3:
Project ID	Monaltrie	1958 Aprial Photo
Date	11 September 2020	1958 Aeriai Frioto

Report Number	2216
Project ID	Monaltrie
Date	11 September 2020

Figure 4: 1971 Aerial Photo

Report Number	2216	Figure 5:
Project ID	Monaltrie	1987 Aprial Photo
Date	11 September 2020	1987 Aeriai Prioto

Report Number	2216	
Project ID	Monaltrie	
Date	11 September 2020	

Figure 6: 1991 Aerial Photo

Report Number	2216	
Project ID	Monaltrie	
Date	11 September 2020	

Figure 7: 1997 Aerial Photo **APPENDIX 2 – LABORATORY REPORTS**

a: Sydnay.pdf page: 1 SGS Rat: SE210861_COC

CHAIN OF CUSTODY & ANALYSIS REQUEST

Page _1___ of __1__

		0	hland		001.4		- 0/				CALCOUR	D		() 1			40.5									
Contominated Site In	rectinations	Compan	y Nam	e: _							Projec	ct Nar	ne/No		22	16 E	ast L	Ismore	e							
Australia Pty Ltd	restigations	Address	Address:			933 Wardell Rd Meerschaum Vale						Purchase Order No:														
												Resul	ts Re	quired	By:	No	orma	I TAT								
				_								Telep	hone:			0	499 8	859 5	28							
		Contact	Name:		Dane	Egelto	on					Facsir	mile:													
												Email	Resu	ilts:		da	ane(@csia	aus.c	om.a	au					
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	Metals (8)	OCP/OPP	TPH																	
DAST-1	7/9/20	1		X			1	1	1																	
DAST-2	7/9/20	2		X			1	1	1					1	+	+					D	Jupl	ica	fe.		
S1	7/9/20	3		X			~	×	1			SGS	EHS	Syd	ney	со	C	+								
												SE	21	108	36'	1										
												+		1							+					
Relinquished By: Dane Eg	glton Tell	Dat	e/Time	e: 10a	m 7/9/	20	L	L		Received By:	Aus	Post	-				D	ate/T	ime	L						
Relinquished By:		Dat	e/Time	e:						Received By:	5	R	R	t.r			D	ate/T	ime	08	310	910	0	0	0.	20
Samples Intact: Yes No	nperat	ure:	Ambie	ht / C	hilled			Sample Coole	r S	ealed:	Yes	/ No	\sim	\vdash	La	abora	tory C	Quota	ation	No:	-0		0	20		
0	-	Cor	nment	s		·																				

M	M			С	HA	N C	F C	USTODY	′ & AN	IALY	SIS	RE	QUI	EST					Page	e1_	_ of	_1	
O the last of Otto Im		Compan	ny Nam	e:	CSI A	ustrali	a P/L				P	roject	Name/	No:	221	6 East L	.ismor	re					
Australia Pty Ltd	estigations	Address	:		933 V	Vardel	Rd M	eerschaum Vale	Э		P	urchas	se Orde	er No:	1								
				-							R	lesults	Requir	red By:	Nor	mal TAT							
		Contact	Namo	-	Dana	Faelte						elepho	one:		049	9 859 5	28						_
		Contact	Name	-	Dane	Egent					F	mail R	Results:		dar	eleni	RUD. c	then a					_
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	Metals (8)	OCP/OPP															
EL1	19/8/20	1	1	1			1	1															
EL2	19/8/20	2		1			1	1							SGS		vdne		oc				
EL2D	19/8/20	3		1			1	1							CE	240	130		00				
EL3	19/8/20	4		1			1	1							ЭE	210	130	94					
EL4	19/8/20	5		1			1	1															
EL5	19/8/20	6		1			~	1															
EL6	19/8/20	7		1			1	1															
EL7	19/8/20	8		1			~	*															
EL8	19/8/20	9		1			1	1															
EL9	19/8/20	16		1			1	1													/	/	
Relinquished By: Dan	e Edolfor	Da	te/Tim	e:	9al	2	21/	8/20	Receiv	ed By:	Au	5 1	ast	Alda	nulle	Date/T	ime	90	am	2	1/8/	20	
Relinquished By:	Jui	Da	te/Tim	e:			1	/	Receiv	ved By:	5	BS	Bu	h	1	Date/1	Time	21	80/4	120	00	P-25	-
Samples Intact: (Yes/ No	Samples Intact: (Yes/)No T						Temperature: Ambient / Chilled Sample Cooler Sealed: Yes/ No							1	Laboratory Quotation No:								
Juli		Co	mmen	ts	3																		

3 SGS Ref. SE210304_COC

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	DANE EGELTON	Manager	Huong Crawford	
Client	CSI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	PO BOX 389 ALSTONVILLE NSW 2477	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	(Not specified)	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	dane@csiaus.com.au	Email	au.environmental.sydney@sgs.com	
Project	2216 East Lismore	SGS Reference	SE210861 R0	
Order Number	(Not specified)	Date Received	08 Sep 2020	
Samples	3	Date Reported	15 Sep 2020	

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Row

Bennet LO Senior Organic Chemist/Metals Chemis

Dong LIANG Metals/Inorganics Team Leader

Armln

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 www f +61 2 8594 0499

www.sgs.com.au

ANALYTICAL REPORT

Sample Number SE210861.001 SE210861.002 SE210861.003

SE210861 R0

Paramet Units DAST-11 DAST-21 DAST-21 DAST-21 DAST-21 Planter Units Volt Volt Volt Volt Valialle Petrolaum Hydrocarbons in Soll Method: AM33 Test 4:52 -43 -43 Winglato mgla 23 -45 -43 -43 Sumglato mgla 1 111 112 112 41 2 domotorbane (lamagta) N - 111 112 112 41 2 domotorbane (lamagta) N - 111 112 -42.1 12 domotorbane (lamagta) N - 111 112 -42.1 12 domotorbane (lamagta) N - 111 -42.1 -42.1 12 domotorbane (lamagta) Method 120 -23 -23 -23 12 domotorbane (lamagta) Method 120 -23 -23 -23 12 domotorbane (lamagta) Method 120 -23 -23 -23 12 domotorbane (lamagta)			Sample Matrix	Soil 07 Sep 2020	Soil 07 Sep 2020	Soil 07 Sep 2020
PennterUnitsUnitsViellie Perforeum Hydrocarbons in SollMethod: AMSTester: SPUSUREViellie Comethod204.004.00Sille Comethod204.004.00Sille Comethod204.004.00Sille Comethod204.004.00Sille CoSille Co9.004.004.00Sille CoSille Co9.004.004.00Sille CoSille Co9.004.004.00Sille CoMethod204.004.00Sille CoMethod204.004.00Sille CoMethod4.004.004.00Sille CoMethod4.004.004.00Sille CoMethod4.004.004.00Sille CoMethod4.004.004.00Sille CoMethod4.004.004.00Sille CoMethod4.004.004.00Sille CoMethod4.004.004.00Sille CoMethod4.004.004.00Sille CoMethodMethod4.004.00Sille CoMethodMethod4.004.00Sille CoMethodMethod4.004.00Sille CoMethodMethod4.004.00Sille CoMethodMethod4.004.00Sille CoMethodMethod4.004.00Sille CoMethod<			Sample Name	DAST-1	DAST-2	S1
PaneticUnitsUnitsUnitsVolatile PertonsMode: ANASTest c.C.G.4.0.4.0.Insel CaC.G.may g204.0.4.0.4.0.SurrogatioSurrogatioSurrogatio5.1.0.1.0.1.0.Gebarres (Furngen)Surrogatio5.1.0.4.0.4.0.4.0.Beronductorscree (Furngen)Surrogatio5.1.0.4.0.4.0.4.0.Beronductorscree (Furngen)SurrogatioSurrogatio3.0.4.0.4.0.4.0.Beronductorscree (Furngen)MultisSurrogatio3.0.4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons) in SoilMultisSurrogatio3.0.4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons) in SoilMultisMultis4.0.4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons) in SoilMultisMultis4.0.4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons)MultisMultis4.0.4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons)MultisMultis4.0.4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons)MultisMultisMultis4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons)MultisMultisMultis4.0.4.0.4.0.Test (Foctar Recoverable Mythcarbons)MultisMultisMultisMultis4.0.4.0.Test (Foctar						
Volume vector with a state it substrateName vector with a state it substrateVector	Parameter	Units	LOR			
Thridocloimovig50-20-20-20Burdocloimyig50-20-20-20Sutrogalisstrictama (surogato)%-1104104104Branchance (surogato)%-0909090Branchance (surogato)%-0909090Phil F Bandsmonig20-00-00-00TRI (Coll mine DEX (F)monig20-00-00-00TRI (Coll mine DEX (F)monig20-00-00-00TRI (Coll mine DEX (F)monig20-00-00-00TRI (Coll Coll man DEX (F)monig20-00-00-00TRI (Coll Coll man DEX (F)monig20-00-00-00TRI (Coll Coll Coll (F)monig20-00-00-00TRI (Coll Coll Coll (F)monig20-00-00-00TRI (Coll Coll (F)monig20-00-00-00TRI (Coll Coll (F)monig20-00-00-00TRI (Coll Coll (F)monig20-00-00-00TRI (Coll (F) <td< td=""><td>Volatile Petroleum Hydrocarbons in Soil Method: AN4</td><td>133 Tested: 9/9/2</td><td>2020</td><td></td><td></td><td></td></td<>	Volatile Petroleum Hydrocarbons in Soil Method: AN4	133 Tested: 9/9/2	2020			
The form SumpatesThe make SumpatesSum of the math Sum of the sum of the math 	TRH C6-C10	mg/kg	25	<25	<25	<25
Surprise Surprise Surprise Surprise Surprise 64/3.04 (Sungel) 10 101 101 101 101 64/0004 (Sungel) 10 101 101 101 101 1014 F Eards 101 101 101 101 101 1014 G Sungel	TRH C6-C9	mg/kg	20	<20	<20	<20
9.1.3 data (Sampata)%144113138distaura (Sampata)%040008Unitable Colspan="4">Unitable Colspan="4"Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4"Unitable Colspan="4">Unitable Colspan="4"Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4">Unitable Colspan="4"Unitable Colspan="4">Unitable Colspan="4"Unitable Colspan="4">Unitable Colspan="4"Unitable Colspan="4">Unitable Colspan="4"Unitable Colspan="4" <td>Surrogates</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Surrogates					
disbandbooksmame (Sorngate)%64060060Desandbooksmame (Sorngate)% <td< td=""><td>d4-1,2-dichloroethane (Surrogate)</td><td>%</td><td>-</td><td>114</td><td>112</td><td>133</td></td<>	d4-1,2-dichloroethane (Surrogate)	%	-	114	112	133
Bondbocksmenc (Garonges)9,9,9,9,9,9,9,9,VHF FlardsWHS Flardsmaya69, </td <td>d8-toluene (Surrogate)</td> <td>%</td> <td>-</td> <td>93</td> <td>93</td> <td>96</td>	d8-toluene (Surrogate)	%	-	93	93	96
VPHI Panda Impig 0.1 4.0.1 4.0.1 Bracenic (F0) mg/kg 2.5 4.2.5 4.5.1 4.2.5 TRI (Total Recoverable Hydrocarbons) In Soll Method: Testics: Subcoverable Hydrocarbons In Soll Method: Testic	Bromofluorobenzene (Surrogate)	%	-	94	90	88
Benergin B	VPH F Bands					
Tith Clock Unional ETEX (F1)mg/sgé.ge.ge.gTIRH Clock Clock Unional Actional A	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH (Total Rescoverable hydrocarbons) 1980 MethodsTested:USUNTINI CACACAmgNg20-2.00-2.00-2.00TINI CACACAmgNg4.00-4.00-4.00-2.00TINI CACACAmgNg100-4.00-4.00-2.00TINI CACACAmgNg100-4.00-2.00-2.00TINI CACACAmgNg200-2.00-2.00-2.00TINI CACACATINE (Faced)mgNg200-2.00-2.00-2.00TINI CACACATINE (Faced)mgNg200-2.00-2.00-2.00TINI CACACATINE (Faced)mgNg200-2.00-2.00-2.00TINI CACACATINE (Faced)mgNg200-2.00-2.00-2.00TINI CACACATINE (Faced)mgNg100-2.00-2.00-2.00TINI CACACATINE (Faced)mgNg0.1-0.10-0.10-2.00TINI CACACATINE (Faced)mgNg0.1-0.10-2.00-2.00TINI CACACATINE (Faced)mgNg0.1-0.10-2.00-2.00TINI CACACATINE (Faced)mgNg0.1-0.10-2.00-2.00TINI CACACATINE (Faced)mgNg0.1-0.10-2.00-2.00TINI CACACITINE (Faced)mgNg0.1-0.10-2.00-2.00TINI CACACITINE (Faced)mgNg0.1-0.10-2.00-2.00TINI CACATINE (Faced)mgNg0.1-0.10-2.00-2.00TINI CACATINE (Faced)mgNg0.1	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25
TRH CIG-C14mglig20<20<20<20<20<20TRH CIG-C28mglig454454647872TRH CIG-C28mglig100<100	TRH (Total Recoverable Hydrocarbons) in Soil Metho	d: AN403 Tested	: 9/9/2020			
TRH CS236mg/sg45-465976TRH CS2436mg/sg46-466-450270TRH CS2436mg/sg100-4100-4100-4100TRH CS2406mg/sg110-4110-340TRH CS240734 (Fands)mg/sg110-4100-4200240TRH F Bands	TRH C10-C14	mg/kg	20	<20	<20	<20
THY G2G-G3mg/sq46445445446470IRH G37-G4mg/sq100<100	TRH C15-C28	mg/kg	45	<45	59	76
TRH C30-200mgNg100<100<100<100<100<100TRH C30-200 Tool (Pands)mgNg100<100	TRH C29-C36	mg/kg	45	<45	<45	270
TRH CGCGGT foat (F bands)mg/g100<	TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C40 Teak (F bands)mg/g210<210<210<210240TRH F BandsTRH >C10-C16mg/g25<25	TRH C10-C36 Total	mg/kg	110	<110	<110	340
THY Pands TRH Pands 26 4.25 4.25 4.26 4.26 TRH PC0.C16 (%) mg/q 0 4.00 4.00 4.00 TRH PC0.C26 (%) mg/q 0 4.00 4.00 4.00 TRH PC0.C26 (%) Tester: 99/200 - - 4.00 4.01 4.01 CP settices IS OF Method: AN420 Tester: 99/200 mg/q 0.1 4.01 4.01 4.01 Alpha PIC mg/q 0.1 4.01 4.01 4.01 4.01 Indian mg/q 0.1 4.01 4.01 4.01 4.01 Adm mg/q 0.1 4.01 4.01 4	TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	240
TRH >C10-C16 mghg 25 <26 <25 <25 <26 <25 <26 TRH >C31-CG34 (F3) mghg 90 <100	TRH F Bands					
TRI >C16-C34 (F3) mg/g 90 <00 <00 <00 TRN >C34-C40 (F4) mg/g 120 <120	TRH >C10-C16	mg/kg	25	<25	<25	<25
TRH >C34-C40 (F4) mgkg 120 <120 <120 <120 <120 OC Pesticides in Soil Method: AN420 Tested: 9/9/2/2/2 Hexachoreberzene (HCB) mgkg 0.1 <0.1	TRH >C16-C34 (F3)	mg/kg	90	<90	<90	240
OC Pesticides in Soil Method: AN420 Tested: 9/9/2020 Hexachlorobenzene (HCB) mg/kg 0.1 40.1 40.1 40.1 Alpha BHC mg/kg 0.1 40.1 40.1 40.1 Lindane mg/kg 0.1 40.1 40.1 40.1 Hestachloro mg/kg 0.1 40.1 40.1 40.1 Aldin mg/kg 0.1 40.1 40.1 40.1 Beta BHC mg/kg 0.1 40.1 40.1 40.1 Deta BHC mg/kg 0.1 40.1 40.1 40.1 Op/DDE mg/kg 0.1 40.1 40.1 40.1 Alpha Chiodane mg/kg 0.1 40.1 40.1 40.1 Alp	TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
Hexachlorobenzene (HCB)mg/kg0.1-0.1-0.1-0.1Alpha BHCmg/kg0.1-0.1-0.1-0.1-0.1Lindanemg/kg0.1-0.1-0.1-0.1-0.1Aldrinmg/kg0.1-0.1-0.1-0.1-0.1Aldrinmg/kg0.1-0.1-0.1-0.1-0.1Bela BHCmg/kg0.1-0.1-0.1-0.1-0.1Delta BHCmg/kg0.1-0.1-0.1-0.1-0.1Delta BHCmg/kg0.1-0.1-0.1-0.1-0.1Op/DDEmg/kg0.1-0.1-0.1-0.1-0.1op/DDEmg/kg0.1-0.1-0.1-0.1-0.1Alpha Chicduanemg/kg0.1-0.1-0.1-0.1-0.1tars-Nonachlormg/kg0.1-0.1-0.1-0.1-0.1pp/DDEmg/kg0.1-0.1-0.1-0.1-0.1pp/DDmg/kg0.1-0.1-0.1-0.1-0.1op/DDmg/kg0.1-0.1-0.1-0.1-0.1op/DDmg/kg0.1-0.1-0.1-0.1-0.1op/DDmg/kg0.1-0.1-0.1-0.1-0.1op/DDmg/kg0.1-0.1-0.1-0.1-0.1op/DDmg/kg0.1-0.1-0.1-0.1-0.1pp/DDmg/kg0.1-0.1-0.1 <td< td=""><td>OC Pesticides in Soil Method: AN420 Tested: 9/9/2</td><td>020</td><td></td><td></td><td></td><td></td></td<>	OC Pesticides in Soil Method: AN420 Tested: 9/9/2	020				
Alpha BHC Imgkg 0.1	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Lindanemgkg0.1<0.1<0.1<0.1<0.1Heptachiormgkg0.1<0.1	Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlormgkg0.1	Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Addin mgkg 0.1 <0.1 <0.1 <0.1 Beta BHC mgkg 0.1 <0.1	Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC mgkg 0.1 <0.1 <0.1 <0.1 <0.1 Deta BHC mgkg 0.1 <0.1	Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Dela BHC 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 Heptachor epoxide mg/kg 0.1 <0.1	Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <td>Delta BHC</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
o.p'-DDE mg/kg 0.1 40.1 40.1 40.1 40.1 40.1 Alpha Endosulfan mg/kg 0.2 40.2 40.2 40.2 Gama Chlordane mg/kg 0.1 40.1 40.1 40.1 Alpha Chlordane mg/kg 0.1 40.1 40.1 40.1 Alpha Chlordane mg/kg 0.1 40.1 40.1 40.1 p.p-DDE mg/kg 0.1 40.1 40.1 40.1 p.p-DDE mg/kg 0.1 40.1 40.1 40.1 p.p-DDE mg/kg 0.2 40.2 40.2 40.2 o,p-DDD mg/kg 0.1 40.1 40.1 40.1 o,p-DDT mg/kg 0.1 40.1 40.1 40.1 p.p-DDT mg/kg 0.1 40.1 40.1 40.1 p.p-DDT mg/kg 0.1 40.1 40.1 40.1 Endra Malphate mg/kg 0.1 40.1	Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
Apha Endosultan mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Gamma Chlordane mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Alpha Chlordane mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 trans-Nonachlor mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 p.p'-DDE mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Dieldrin mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Dieldrin mg/kg 0.2 -0.2 -0.2 -0.2 -0.2 Dieldrin mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 o.p'-DDD mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Beta Endosufan mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 p.p'DDD mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 p.p'DDT mg/kg 0.1 -0.1 -0.1 -0.1 -0.1 Endosufan sulphate mg/kg	Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Applie Chorocarie Mig Kg 0.1 40.1 40.1 40.1 trans-Nonachlor Mig/kg 0.1 40.1 40.1 40.1 p,p'DDE Mig/kg 0.1 40.1 40.1 40.1 Dieldrin Mig/kg 0.2 40.2 40.2 40.2 Endrin Mig/kg 0.2 40.2 40.2 40.2 o,p'DDD Mig/kg 0.1 40.1 40.1 40.1 o,p'DDT Mig/kg 0.1 40.1 40.1 40.1 o,p'DDT Mig/kg 0.1 40.1 40.1 40.1 p,p'DDD Mig/kg 0.1 40.1 40.1 40.1 p,p'DDT Mig/kg 0.1 40.1 40.1 40.1 Endosufan sulphate Mig/kg 0.1 40.1 40.1 40.1 Endrin Aldehyde Mig/kg 0.1 40.1 40.1 40.1 Endrin Ketone Mig/kg 0.1 40.1 40.1 40.1 </td <td></td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>		mg/kg	0.1	<0.1	<0.1	<0.1
Laise-Voluciand Ingrig 0.1 KO.1	Aipha Ghiordane	ing/kg	0.1	<0.1	<0.1	<0.1
p.p. occ N. M. Y. M. K. M.		mg/kg	0.1	<0.1	<0.1	<0.1
Indiri Indidiri Indiri Indid	Dieldrin	mg/kg	0.1	<0.2	<0.2	<0.2
ngrig ngrig <th< td=""><td>Endrin</td><td>ma/ka</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></th<>	Endrin	ma/ka	0.2	<0.2	<0.2	<0.2
o,p'-DDT mg/kg 0.1 <0.1 <0.1 <0.1 Beta Endosulfan mg/kg 0.2 <0.2	o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan mg/kg 0.2 <0.2 <0.2 0.3 p,p'DDD mg/kg 0.1 <0.1	o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
p.p'-DDD mg/kg 0.1 <0.1 <0.1 p.p'-DDT mg/kg 0.1 <0.1	Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	0.3
p.p'-DDT mg/kg 0.1 <0.1 <0.1 <0.1 Endosulfan sulphate mg/kg 0.1 <0.1	p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate mg/kg 0.1 <0.1 <0.1 <0.1 Endrin Aldehyde mg/kg 0.1 <0.1	p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde mg/kg 0.1 <0.1 <0.1 <0.1 Methoxychlor mg/kg 0.1 <0.1	Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor mg/kg 0.1 <0.1 <0.1 <0.1 Endrin Ketone mg/kg 0.1 <0.1	Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone mg/kg 0.1 <0.1 <0.1 <0.1 Isodrin mg/kg 0.1 <0.1	Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin mg/kg 0.1 <0.1 <0.1 <0.1 Mirex mg/kg 0.1 <0.1	Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex mg/kg 0.1 <0.1 <0.1 <0.1 Total CLP OC Pesticides mg/kg 1 <1	Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides mg/kg 1 <1 <1 <1	Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
	Total CLP OC Pesticides	mg/kg	1	<1	<1	<1

ANALYTICAL REPORT

SE210861 R0

		Sample Numbe Sample Matrix Sample Date Sample Name	r SE210861.001 k Soil e 07 Sep 2020 e DAST-1	SE210861.002 Soil 07 Sep 2020 DAST-2	SE210861.003 Soil 07 Sep 2020 S1
Parameter	Units	LOR			
OC Pesticides in Soil Method: AN420 Tested: 9/9/2	020 (continued)				
Surrogates	(,				
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	109	103	102
OP Pesticides in Soil Method: AN420 Tested: 9/9/2	020				
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7
Surrogates					
2-fluorobiphenyl (Surrogate)	%	-	76	90	98
d14-p-terphenyl (Surrogate)	%	-	82	98	101
Total Recoverable Elements in Soil/Waste Solids/Materi	als by ICPOES	Method: AN04	0/AN320 Tested	: 9/9/2020	
Arsenic, As	mg/kg	1	2	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	27	26	10
Copper, Cu	mg/kg	0.5	13	13	19
Nickel, Ni	mg/kg	0.5	9.1	8.4	29
Lead, Pb	mg/kg	1	11	11	3
Zinc, Zn	mg/kg	2	170	180	70
Mercury in Soil Method: AN312 Tested: 9/9/2020					
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05
Moisture Content Method: AN002 Tested: 9/9/2020					

% Moisture	%w/w	1	18.1	17.8	4.6

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB208738	mg/kg	0.05	<0.05	1%	115%	87%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC	Units	LOR	DUP %RPD
	Reference			
% Moisture	LB208725	%w/w	1	2 - 15%

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference	-				%Recovery	%Recovery
Hexachlorobenzene (HCB)	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Alpha BHC	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Lindane	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Heptachlor	LB208724	mg/kg	0.1	<0.1	0%	75%	92%
Aldrin	LB208724	mg/kg	0.1	<0.1	0%	78%	86%
Beta BHC	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Delta BHC	LB208724	mg/kg	0.1	<0.1	0%	76%	87%
Heptachlor epoxide	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDE	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Endosulfan	LB208724	mg/kg	0.2	<0.2	0%	NA	NA
Gamma Chlordane	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Chlordane	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
trans-Nonachlor	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
p,p'-DDE	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Dieldrin	LB208724	mg/kg	0.2	<0.2	0%	75%	84%
Endrin	LB208724	mg/kg	0.2	<0.2	0%	78%	84%
o,p'-DDD	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDT	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Beta Endosulfan	LB208724	mg/kg	0.2	<0.2	0%	NA	NA
p,p'-DDD	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
p,p'-DDT	LB208724	mg/kg	0.1	<0.1	0%	61%	67%
Endosulfan sulphate	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Aldehyde	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Methoxychlor	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Ketone	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Isodrin	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Mirex	LB208724	mg/kg	0.1	<0.1	0%	NA	NA
Total CLP OC Pesticides	LB208724	mg/kg	1	<1	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB208724	%	-	102%	1%	89%	116%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dichlorvos	LB208724	mg/kg	0.5	<0.5	0%	91%	81%
Dimethoate	LB208724	mg/kg	0.5	<0.5	0%	NA	NA
Diazinon (Dimpylate)	LB208724	mg/kg	0.5	<0.5	0%	92%	99%
Fenitrothion	LB208724	mg/kg	0.2	<0.2	0%	NA	NA
Malathion	LB208724	mg/kg	0.2	<0.2	0%	NA	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB208724	mg/kg	0.2	<0.2	0%	95%	101%
Parathion-ethyl (Parathion)	LB208724	mg/kg	0.2	<0.2	0%	NA	NA
Bromophos Ethyl	LB208724	mg/kg	0.2	<0.2	0%	NA	NA
Methidathion	LB208724	mg/kg	0.5	<0.5	0%	NA	NA
Ethion	LB208724	mg/kg	0.2	<0.2	0%	64%	71%
Azinphos-methyl (Guthion)	LB208724	mg/kg	0.2	<0.2	0%	NA	NA
Total OP Pesticides*	LB208724	mg/kg	1.7	<1.7	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
2-fluorobiphenyl (Surrogate)	LB208724	%	-	83%	8 - 9%	86%	85%
d14-p-terphenyl (Surrogate)	LB208724	%	-	97%	4 - 21%	84%	83%

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Arsenic, As	LB208745	mg/kg	1	<1	11%	107%	79%
Cadmium, Cd	LB208745	mg/kg	0.3	<0.3	0%	92%	84%
Chromium, Cr	LB208745	mg/kg	0.5	<0.5	10%	120%	87%
Copper, Cu	LB208745	mg/kg	0.5	<0.5	7%	107%	94%
Nickel, Ni	LB208745	mg/kg	0.5	<0.5	5%	104%	91%
Lead, Pb	LB208745	mg/kg	1	<1	4%	106%	90%
Zinc, Zn	LB208745	mg/kg	2	<2	3%	106%	54%

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C10-C14	LB208724	mg/kg	20	<20	0%	93%	88%
TRH C15-C28	LB208724	mg/kg	45	<45	0%	83%	80%
TRH C29-C36	LB208724	mg/kg	45	<45	0%	88%	80%
TRH C37-C40	LB208724	mg/kg	100	<100	0%	NA	NA
TRH C10-C36 Total	LB208724	mg/kg	110	<110	0%	NA	NA
TRH >C10-C40 Total (F bands)	LB208724	mg/kg	210	<210	0%	NA	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH >C10-C16	LB208724	mg/kg	25	<25	0%	93%	88%
TRH >C16-C34 (F3)	LB208724	mg/kg	90	<90	0%	83%	78%
TRH >C34-C40 (F4)	LB208724	mg/kg	120	<120	0%	85%	NA

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C10	LB208723	mg/kg	25	<25	0%	84%	69%
TRH C6-C9	LB208723	mg/kg	20	<20	0%	86%	72%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d4-1,2-dichloroethane (Surrogate)	LB208723	%	-	122%	9 - 13%	106%	93%
d8-toluene (Surrogate)	LB208723	%	-	97%	10 - 14%	89%	78%
Bromofluorobenzene (Surrogate)	LB208723	%	-	101%	5 - 16%	96%	84%

VPH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB208723	mg/kg	0.1	<0.1	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB208723	mg/kg	25	<25	0%	79%	64%

METHOD SUMMARY

- METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

- IS Insufficient sample for analysis. LNR Sample listed, but not received.
- NATA accreditation does not cover the
- performance of this service.

SGS

- Indicative data, theoretical holding time exceeded. **
- *** Indicates that both * and ** apply.

- LOR Limit of Reporting
- 1↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance QC result is below the lower tolerance QFL
 - The sample was not analysed for this analyte
 - Not Validated
- NVL

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

-

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- 1 Bq is equivalent to 27 pCi a.
- 37 MBq is equivalent to 1 mCi b.

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	DANE EGELTON	Manager	Huong Crawford
Client	CSIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	PO BOX 389 ALSTONVILLE NSW 2477	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	dane@csiaus.com.au	Email	au.environmental.sydney@sgs.com
Project	2216 East Lismore	SGS Reference	SE210304 R0
Order Number	(Not specified)	Date Received	24 Aug 2020
Samples	10	Date Reported	31 Aug 2020

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES _

Row

Bennet LO Senior Organic Chemist/Metals Chemis

Dong LIANG Metals/Inorganics Team Leader

Armln

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

31-August-2020

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE210304 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE210304.001 Soil 19 Aug 2020 EL1	SE210304.002 Soil 19 Aug 2020 EL2	SE210304.003 Soil 19 Aug 2020 EL2D	SE210304.004 Soil 19 Aug 2020 EL3
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 26/8/2	2020					
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldebude	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methovychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	ma/ka	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1
Surrogates				II		
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	108	107	111	110
OP Pesticides in Soil Method: AN420 Tested: 26/8/2	020					
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2

Azinphos-methyl (Guthion) Total OP Pesticides*

Methidathion

Ethion

 Surrogates
 2-fluorobiphenyl (Surrogate)
 %
 101
 96
 103
 100

 d14-p-terphenyl (Surrogate)
 %
 96
 109
 97
 111

0.5

0.2

0.2

1.7

<0.5

<0.2

<0.2

<1.7

<0.5

<0.2

<0.2

<1.7

<0.5

<0.2

<0.2

<1.7

<0.5

<0.2

<0.2

<1.7

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 26/8/2020

mg/kg

mg/kg

mg/kg

mg/kg

Arsenic, As	mg/kg	1	2	1	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	29	35	38	80
Copper, Cu	mg/kg	0.5	25	26	27	18
Nickel, Ni	mg/kg	0.5	6.5	7.0	7.7	8.2
Lead, Pb	mg/kg	1	6	6	6	6
Zinc, Zn	mg/kg	2	140	85	91	64

		Sample Numbe Sample Matriz Sample Date Sample Name	SE210304.001 Soil 9 19 Aug 2020 9 EL1	SE210304.002 Soil 19 Aug 2020 EL2	SE210304.003 Soil 19 Aug 2020 EL2D	SE210304.004 Soil 19 Aug 2020 EL3		
Parameter	Units	LOR						
Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 26/8/2020 (continued)								
Mercury in Soil Method: AN312 Tested: 26/8/2020								
Mercury	mg/kg	0.05	0.05	0.05	0.06	0.05		
Moisture Content Method: AN002 Tested: 26/8/2020)							
% Moisture	%w/w	1	32.7	30.5	31.9	35.8		

SE210304 R0

		Sample Numbe	r SE210304.005	SE210304.006	SE210304.007	SE210304.008
		Sample Matrix	k Soil	Soil	Soil	Soil
		Sample Date	e 19 Aug 2020	19 Aug 2020 FL 5	19 Aug 2020 FL 6	19 Aug 2020 FL 7
		oumple Hum		220		
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 26/8/	2020					
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	106	110	111	108
	1					
OP Pesticides in Soil Method: AN420 Tested: 26/8/	2020					
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2

Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	99	109	93	101
d14-p-terphenyl (Surrogate)	%	-	96	128	127	100

<0.2

<0.5

<0.2

<0.2

<1.7

<0.2

<0.5

<0.2

<0.2

<1.7

<0.2

<0.5

<0.2

<0.2

<1.7

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 26/8/2020

Arsenic, As	mg/kg	1	2	1	3	1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	88	49	82	42
Copper, Cu	mg/kg	0.5	19	19	21	20
Nickel, Ni	mg/kg	0.5	11	6.6	9.9	9.2
Lead, Pb	mg/kg	1	8	5	7	5
Zinc, Zn	mg/kg	2	65	83	100	75

		Sample Number Sample Matrix Sample Date Sample Name	SE210304.005 Soil 9 19 Aug 2020 EL4	SE210304.006 Soil 19 Aug 2020 EL5	SE210304.007 Soil 19 Aug 2020 EL6	SE210304.008 Soil 19 Aug 2020 EL7	
Parameter	Units	LOR					
Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 26/8/2020 (continued)							
Mercury in Soil Method: AN312 Tested: 26/8/2020							
Mercury	mg/kg	0.05	0.05	0.05	0.06	0.07	
Moisture Content Method: AN002 Tested: 26/8/2020)						
% Moisture	%w/w	1	31.0	42.9	38.1	28.4	

		Sample Number	SE210304.009	SE210304.010
		Sample Matrix	Soil	Soil
		Sample Date	19 Aug 2020 FI 8	19 Aug 2020 Fl 9
		Gumple Hume	220	220
Parameter	Units	LOR		
OC Pesticides in Soil Method: AN420 Tested: 26/8/	2020			
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1

Surrogates

Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	106	106

OP Pesticides in Soil Method: AN420 Tested: 26/8/2020

mg/kg	0.5	<0.5	<0.5
mg/kg	0.5	<0.5	<0.5
mg/kg	0.5	<0.5	<0.5
mg/kg	0.2	<0.2	<0.2
mg/kg	0.2	<0.2	<0.2
mg/kg	0.2	<0.2	<0.2
mg/kg	0.2	<0.2	<0.2
mg/kg	0.2	<0.2	<0.2
mg/kg	0.5	<0.5	<0.5
mg/kg	0.2	<0.2	<0.2
mg/kg	0.2	<0.2	<0.2
mg/kg	1.7	<1.7	<1.7
	mg/kg mg/kg	mg/kg 0.5 mg/kg 0.5 mg/kg 0.2 mg/kg 0.2	mg/kg 0.5 <0.5 mg/kg 0.5 <0.5

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	104	99
d14-p-terphenyl (Surrogate)	%	-	100	95
				1

		Sample Numbe Sample Matri Sample Dat Sample Nam	er SE210304.009 ix Soil ie 19 Aug 2020 ie EL8	SE210304.010 Soil 19 Aug 2020 EL9
Parameter	Units	LOR		
Total Recoverable Elements in Soil/Waste Solids/Materi	als by ICPOES	Method: AN04	10/AN320 Teste	d: 26/8/2020
Arsenic, As	mg/kg	1	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	35	18
Copper, Cu	mg/kg	0.5	14	19
Nickel, Ni	mg/kg	0.5	12	7.6
Lead, Pb	mg/kg	1	7	6
Zinc, Zn	mg/kg	2	80	110
Mercury in Soil Method: AN312 Tested: 26/8/2020				

Mercury	mg/kg	0.05	0.07	0.06

Moisture Co	ntent	Method: AN002	Tested: 26/8/2020

% Moisture	%w/w	1	29.8	26.5

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB207639	mg/kg	0.05	<0.05	0 - 2%	98%	73%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC	Units	LOR	DUP %RPD
	Reference			
% Moisture	LB207608	%w/w	1	0 - 1%

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Hexachlorobenzene (HCB)	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Alpha BHC	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Lindane	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Heptachlor	LB207610	mg/kg	0.1	<0.1	0%	91%	116%
Aldrin	LB207610	mg/kg	0.1	<0.1	0%	101%	127%
Beta BHC	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Delta BHC	LB207610	mg/kg	0.1	<0.1	0%	104%	132%
Heptachlor epoxide	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDE	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Endosulfan	LB207610	mg/kg	0.2	<0.2	0%	NA	NA
Gamma Chlordane	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Chlordane	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
trans-Nonachlor	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
p,p'-DDE	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Dieldrin	LB207610	mg/kg	0.2	<0.2	0%	103%	125%
Endrin	LB207610	mg/kg	0.2	<0.2	0%	107%	129%
o,p'-DDD	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDT	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Beta Endosulfan	LB207610	mg/kg	0.2	<0.2	0%	NA	NA
p,p'-DDD	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
p,p'-DDT	LB207610	mg/kg	0.1	<0.1	0%	87%	81%
Endosulfan sulphate	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Aldehyde	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Methoxychlor	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Ketone	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Isodrin	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Mirex	LB207610	mg/kg	0.1	<0.1	0%	NA	NA
Total CLP OC Pesticides	LB207610	mg/kg	1	<1	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB207610	%	-	107%	1%	97%	117%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dichlorvos	LB207610	mg/kg	0.5	<0.5	0%	123%	98%
Dimethoate	LB207610	mg/kg	0.5	<0.5	0%	NA	NA
Diazinon (Dimpylate)	LB207610	mg/kg	0.5	<0.5	0%	126%	117%
Fenitrothion	LB207610	mg/kg	0.2	<0.2	0%	NA	NA
Malathion	LB207610	mg/kg	0.2	<0.2	0%	NA	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB207610	mg/kg	0.2	<0.2	0%	110%	113%
Parathion-ethyl (Parathion)	LB207610	mg/kg	0.2	<0.2	0%	NA	NA
Bromophos Ethyl	LB207610	mg/kg	0.2	<0.2	0%	NA	NA
Methidathion	LB207610	mg/kg	0.5	<0.5	0%	NA	NA
Ethion	LB207610	mg/kg	0.2	<0.2	0%	132%	132%
Azinphos-methyl (Guthion)	LB207610	mg/kg	0.2	<0.2	0%	NA	NA
Total OP Pesticides*	LB207610	mg/kg	1.7	<1.7	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
2-fluorobiphenyl (Surrogate)	LB207610	%	-	100%	3%	95%	103%
d14-p-terphenyl (Surrogate)	LB207610	%	-	116%	11%	83%	95%

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Arsenic, As	LB207632	mg/kg	1	<1	11 - 35%	98%	69%
Cadmium, Cd	LB207632	mg/kg	0.3	<0.3	0 - 15%	110%	76%
Chromium, Cr	LB207632	mg/kg	0.5	<0.5	2 - 6%	96%	77%
Copper, Cu	LB207632	mg/kg	0.5	<0.5	3 - 5%	98%	75%
Nickel, Ni	LB207632	mg/kg	0.5	<0.5	4 - 5%	95%	85%
Lead, Pb	LB207632	mg/kg	1	<1	6 - 7%	101%	84%
Zinc, Zn	LB207632	mg/kg	2	<2	2 - 7%	98%	-18%

METHOD SUMMARY

- METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

FOOTNOTES

IS Insufficient sample for analysis.

SGS

- LNR Sample listed, but not received. * NATA accreditation does not cover the
- performance of this service.
- Indicative data, theoretical holding time exceeded.
 Indicative data, theoretical holding time exceeded and NATA accreditation does not cover the performance of this service.
- LOR Limit of Reporting
- $\uparrow \downarrow \qquad \text{Raised or Lowered Limit of Reporting}$
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	DANE EGELTON	Manager	Huong Crawford	
Client	CSI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	PO BOX 389 ALSTONVILLE NSW 2477	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	(Not specified)	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	dane@csiaus.com.au	Email	au.environmental.sydney@sgs.com	
Project	2216 East Lismore	SGS Reference	SE210861 R0	
Order Number	(Not specified)	Date Received	08 Sep 2020	
Samples	3	Date Reported	15 Sep 2020	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

 Surrogate
 Volatile Petroleum Hydrocarbons in Soil
 1 item

 Matrix Spike
 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES
 1 item

- SAMPLE SUMMARY				
Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	None	
Samples received in correct containers	Yes	Sample counts by matrix	3 Soil	
Date documentation received	8/9/2020	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	17.5°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard	· · ·		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil							Method:	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DAST-1	SE210861.001	LB208738	07 Sep 2020	08 Sep 2020	05 Oct 2020	09 Sep 2020	05 Oct 2020	14 Sep 2020
DAST-2	SE210861.002	LB208738	07 Sep 2020	08 Sep 2020	05 Oct 2020	09 Sep 2020	05 Oct 2020	14 Sep 2020
S1	SE210861.003	LB208738	07 Sep 2020	08 Sep 2020	05 Oct 2020	09 Sep 2020	05 Oct 2020	14 Sep 2020
Moisture Content							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DAST-1	SE210861.001	LB208725	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	14 Sep 2020	14 Sep 2020
DAST-2	SE210861.002	LB208725	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	14 Sep 2020	14 Sep 2020
S1	SE210861.003	LB208725	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	14 Sep 2020	14 Sep 2020
OC Pesticides in Soll							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DAST-1	SE210861.001	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
DAST-2	SE210861.002	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
S1	SE210861.003	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
OP Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DAST-1	SE210861.001	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	15 Sep 2020
DAST-2	SE210861.002	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	15 Sep 2020
S1	SE210861.003	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	15 Sep 2020
Total Recoverable Elements	in Soil/Waste Solids/Mat	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DAST-1	SE210861.001	LB208745	07 Sep 2020	08 Sep 2020	06 Mar 2021	09 Sep 2020	06 Mar 2021	14 Sep 2020
DAST-2	SE210861.002	LB208745	07 Sep 2020	08 Sep 2020	06 Mar 2021	09 Sep 2020	06 Mar 2021	14 Sep 2020
S1	SE210861.003	LB208745	07 Sep 2020	08 Sep 2020	06 Mar 2021	09 Sep 2020	06 Mar 2021	14 Sep 2020
TRH (Total Recoverable Hyd	rocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DAST-1	SE210861.001	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
DAST-2	SE210861.002	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
S1	SE210861.003	LB208724	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
Volatile Petroleum Hydrocarb	oons in Soil						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DAST-1	SE210861.001	LB208723	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
DAST-2	SE210861.002	LB208723	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020
S1	SE210861.003	LB208723	07 Sep 2020	08 Sep 2020	21 Sep 2020	09 Sep 2020	19 Oct 2020	14 Sep 2020

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	DAST-1	SE210861.001	%	60 - 130%	109
	DAST-2	SE210861.002	%	60 - 130%	103
	S1	SE210861.003	%	60 - 130%	102
OP Pesticides in Soll				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	DAST-1	SE210861.001	%	60 - 130%	76
	DAST-2	SE210861.002	%	60 - 130%	90
	S1	SE210861.003	%	60 - 130%	98
d14-p-terphenyl (Surrogate)	DAST-1	SE210861.001	%	60 - 130%	82
	DAST-2	SE210861.002	%	60 - 130%	98
	S1	SE210861.003	%	60 - 130%	101
Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	DAST-1	SE210861.001	%	60 - 130%	94
	DAST-2	SE210861.002	%	60 - 130%	90
	S1	SE210861.003	%	60 - 130%	88
d4-1,2-dichloroethane (Surrogate)	DAST-1	SE210861.001	%	60 - 130%	114
	DAST-2	SE210861.002	%	60 - 130%	112
	S1	SE210861.003	%	60 - 130%	133 ①
d8-toluene (Surrogate)	DAST-1	SE210861.001	%	60 - 130%	93
	DAST-2	SE210861.002	%	60 - 130%	93
	S1	SE210861.003	%	60 - 130%	96

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB208738.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB208724.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	102
OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB208724.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2

		Malathion	iiig/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	83
		d14-p-terphenyl (Surrogate)	%	-	97
Total Recoverable Ele	ements in Soil/Waste Solids	Materials by ICPOES		Method: ME	-(AU)-[ENV]AN040/AN320
Sample Number		Parameter	Units	LOR	Result
L B208745 001		Arsenic As	ma/ka	1	<1

LB208745.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2

TRH (Total Recoverable Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result
LB208724.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hy	drocarbons) in Soil (continue	0		Meth	od: ME-(AU)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result
LB208724.001		TRH C10-C36 Total	mg/kg	110	<110
Volatile Petroleum Hydrocar	bons in Soil			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB208723.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	122

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	(ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210863.026	LB208738.014	Mercury	mg/kg	0.05	0.0384537294	0.0504467242	142	1

Moisture Content

Moisture Content						Metho	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210879.001	LB208725.011	% Moisture	%w/w	1	15.183246073	25.5094679891	37	2
SE210885.008	LB208725.021	% Moisture	%w/w	1	10.2	8.8	41	15

OC Pesticides in Soil

OC Pesticides in S	Soil							Meth	od: ME-(AU)-[ENVJAN420
Original	Duplicate		Parameter	U	nits	LOR	Original	Duplicate	Criteria %	RPD %
SE210885.007	LB208724.025		Hexachlorobenzene (HCB)	m	g/kg	0.1	<0.1	0	200	0
			Alpha BHC	m	g/kg	0.1	<0.1	0	200	0
			Lindane	m	g/kg	0.1	<0.1	0	200	0
			Heptachlor	m	g/kg	0.1	<0.1	0	200	0
			Aldrin	m	g/kg	0.1	<0.1	0.0003949381	200	0
			Beta BHC	m	g/kg	0.1	<0.1	0	200	0
			Delta BHC	m	g/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	m	g/kg	0.1	<0.1	0	200	0
			o,p'-DDE	m	g/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	m	g/kg	0.2	<0.2	0.0008426175	200	0
			Gamma Chlordane	m	g/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	m	g/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	m	g/kg	0.1	<0.1	0	200	0
		p,p'-DDE	m	g/kg	0.1	<0.1	0	200	0	
			Dieldrin	m	g/kg	0.2	<0.2	0.0030946705	200	0
			Endrin	m	g/kg	0.2	<0.2	0.0050587909	200	0
			o,p'-DDD	m	g/kg	0.1	<0.1	0	200	0
			o,p'-DDT	m	g/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	m	g/kg	0.2	<0.2	0.0016434957	200	0
			p,p'-DDD	m	g/kg	0.1	<0.1	0	200	0
			p,p'-DDT	m	g/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	m	g/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	m	g/kg	0.1	<0.1	0.0045199747	200	0
			Methoxychlor	m	g/kg	0.1	<0.1	0	200	0
			Endrin Ketone	m	g/kg	0.1	<0.1	0.0021037906	200	0
			Isodrin	m	g/kg	0.1	<0.1	0.0009699338	200	0
			Mirex	m	g/kg	0.1	<0.1	0.0015750849	200	0
			Total CLP OC Pesticides	m	g/kg	1	<1	0.0164207226	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	m	g/kg	-	0.16	0.155691343	30	1

des in Soi

							mour		
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210879.002	LB208724.014		Dichlorvos	mg/kg	0.5	0	0	200	0
			Dimethoate	mg/kg	0.5	0	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	0.0553759501	0.0329968649	200	0
			Fenitrothion	mg/kg	0.2	0	0	200	0
			Malathion	mg/kg	0.2	0	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0.0114483976	0	200	0
			Bromophos Ethyl	mg/kg	0.2	0	0	200	0
			Methidathion	mg/kg	0.5	0	0	200	0
			Ethion	mg/kg	0.2	0.0042405576	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	0	0.0065382660	200	0
			Total OP Pesticides*	mg/kg	1.7	0	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4182014052	0.3877371709	30	8
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4910207281	0.4708374570	30	4
SE210885.008	LB208724.023		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in S	soii (continued)						Metho	a: ME-(AU)-	-[⊨NVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210885.008	LB208724.023		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	9
			d14-p-terphenyl (Surrogate)	ma/ka	-	0.6	0.5	30	21
Total Bassyorable	Elemente in Seil/Ma	eto Solido/Metoriok	by ICBOES				Method: ME (N040/AN220
Total Recoverable	Elements in Soli/wa	ste Solids/Materials	a by ICPOES				Method: ME-(11040/201020
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210863.026	LB208745.014		Arsenic, As	mg/kg	1	6.81376685	156.1326052439	45	11
			Cadmium, Cd	mg/kg	0.3	0.040611199	940.0594292682	200	0
			Chromium, Cr	mg/kg	0.5	19.28466206	524.7194987804	31	10
			Copper, Cu	mg/kg	0.5	19.18978224	920.6259180487	33	7
			Nickel, Ni	mg/kg	0.5	13.82167504	604.5596754878	34	5
			Lead, Pb	mg/kg	1	22.81210313	6121.8902757317	34	4
			Zinc, Zn	mg/kg	2	17.98234195	458.5805607317	41	3
TRH (Total Recov	erable Hydrocarbons) in Soil					Metho	d: ME-(AU)-	ENVJAN40
Original	Duplicate	•	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210879.002	L B208724 014		TBH C10-C14	ma/ka	20	0 Onginar	0	200	0
02210070.002	20200124.014		TPH C15.C28	mg/kg	45	0	0	200	0
			TRH C10-C20	nig/kg	45	0	0	200	0
			TRH 023-040	riig/kg	45	0	0	200	0
			TRH C37-C40	mg/kg	100	0	0	200	0
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			IRH >C10-C40 Total (F bands)	mg/kg	210	0	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	0	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
SE210885.007	LB208724.025		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
Volatile Petroleum	Hvdrocarbons in Soi						Metho	d: ME-(AU)-	IENVIAN43
Original	Duplicate	-	Parameter	Units	LOR	Original	Duplicate	Critoria %	RPD %
SE210870.001	1 8208722 026			onite make	25	originar	Duplicate	200	0
3E210679.001	LB200723.020			mg/kg	20	0	0	200	0
		Surrogatas	d4.1.2 dichloroothono (Surrogoto)	mg/kg	20	12 51290425	591 2709151743	200	0
		Surroyates	da teluene (Surregete)	Hig/kg		10.47047042	000 4567464504	20	9
			d8-toluene (Surrogate)	mg/kg	-	10.47847942	929.4567464594	30	10
			Di unonuorobenzene (Surrogate)	mg/kg	-	9.447655636	009.0164278341	30	5
		VPH F Bands	Benzene (FU)	mg/kg	0.1	0.01644532		200	0
			IRH C6-C10 minus BTEX (F1)	mg/kg	25	0	0	200	0
SE210885.007	LB208723.027		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	12.6	11.0378951773	30	13
			d8-toluene (Surrogate)	mg/kg	-	10.6	9.2171664546	30	14
			Bromofluorobenzene (Surrogate)	mg/kg	-	10.3	8.8010664382	30	16
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0.0032467840	200	0
			TOULOG C10 minus DTEX (E1)		25	-05	0	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB208738.002	Mercury	mg/kg	0.05	0.23	0.2	70 - 130	115

OC Pesticides in S	Soil						Method: ME-(A	U)-[ENV]AN420
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB208724.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	75
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	78
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	76
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	75
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	78
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	61
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	89
OP Pesticides in S	Soll						Method: ME-(A	AU)-[ENV]AN420
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB208724.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	91
		Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	92
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	95
		Ethion	mg/kg	0.2	1.3	2	60 - 140	64
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	84
Total Recoverable	Elements in Soil/V	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	VJAN040/AN320
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB208745.002		Arsenic, As	mg/kg	1	340	318.22	80 - 120	107
		Cadmium, Cd	mg/kg	0.3	5.0	5.41	80 - 120	92
		Chromium, Cr	mg/kg	0.5	46	38.31	80 - 120	120
		Copper, Cu	mg/kg	0.5	310	290	80 - 120	107
		Nickel, Ni	mg/kg	0.5	190	187	80 - 120	104
		Lead, Pb	mg/kg	1	95	89.9	80 - 120	106
		Zinc, Zn	mg/kg	2	290	273	80 - 120	106
TRH (Total Recov	erable Hydrocarbo	ns) in Soil					Method: ME-(A	AU)-[ENV]AN403
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB208724.002		TRH C10-C14	mg/kg	20	37	40	60 - 140	93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	83
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	88
	TRH F Bands	TRH >C10-C16	mg/kg	25	37	40	60 - 140	93
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
Volatile Petroleum	Hydrocarbons in S	Soil					Method: ME-(A	AU)-[ENV]AN433
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB208723.002		TRH C6-C10	mg/kg	25	78	92.5	60 - 140	84
		TRH C6-C9	mg/kg	20	69	80	60 - 140	86
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.6	10	70 - 130	106
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.6	10	70 - 130	96
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	49	62.5	60 - 140	79

TRH C6-C10 minus BTEX (F1)

mg/kg

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	hod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE210861.001	LB208738.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	87

OC Pesticides in Soil

OC Pesticides in	Soil						Met	nod: ME-(AL	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE210885.001	LB208724.024		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	92
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	86
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	87
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	84
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	84
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.1	<0.1	0.2	67
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.15	-	116
OP Pesticides in	Soil						Met	nod: ME-(AL	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE210885.001	LB208724.026		Dichlorvos	mg/kg	0.5	1.6	<0.5	2	81
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	2.0	<0.5	2	99
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	<0.2	2	101
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-

		Surrogates	2-fluorobinbenyl (Surrogate)	ma/ka	_	0.4	0.4	_	85
		ounogates	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	83
Total Recoverab	le Elements in Soil/Wa	ste Solids/Mater	als by ICPOES				Method: ME	-(AU)-[ENV	JAN040/AN32
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE210861.001	LB208745.004		Arsenic, As	mg/kg	1	41	2	50	79
			Cadmium, Cd	mg/kg	0.3	42	<0.3	50	84
			Chromium, Cr	mg/kg	0.5	70	27	50	87
			Copper, Cu	mg/kg	0.5	60	13	50	94
			Nickel, Ni	mg/kg	0.5	55	9.1	50	91
			Lead, Pb	mg/kg	1	56	11	50	90
			Zinc, Zn	mg/kg	2	190	170	50	54 ④

mg/kg

mg/kg

mg/kg

mg/kg

0.5

0.2

0.2

1.7

<0.5

1.4

<0.2

7.0

<0.5

<0.2

<0.2

<1.7

2

-

Methidathion

Azinphos-methyl (Guthion)

Total OP Pesticides*

Ethion

71

-

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE210885.001 LB208724.024 TRH C10-C14 mg/kg 20 35 <20 40 88 TRH C15-C28 mg/kg 45 <45 <45 40 80 TRH C29-C36 45 <45 <45 40 80 mg/kg TRH C37-C40 mg/kg 100 <100 <100 -TRH C10-C36 Total 110 <110 <110 mg/kg --TRH >C10-C40 Total (F bands) 210 <210 <210 mg/kg TRH F Bands 40 TRH >C10-C16 25 35 <25 88 mg/kg TRH >C16-C34 (F3) mg/kg 90 <90 <90 40 78 TRH >C34-C40 (F4) 120 <120 <120 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Units LOR Result Original Spike Recovery% Parameter SE210861.001 LB208723.004 TRH C6-C10 mg/kg 25 64 <25 92.5 69 TRH C6-C9 20 58 <20 80 72 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 9.3 11.4 10 93 d8-toluene (Surrogate) mg/kg 7.8 9.3 10 78 Bromofluorobenzene (Surrogate) 8.4 9.4 84 mg/kg -VPH F Benzene (F0) mg/kg 0.1 3.6 <0.1 -Bands TRH C6-C10 minus BTEX (F1) 25 41 <25 62.5 64 mg/kg

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	s
Contact	DANE EGELTON	Manager	Huong Crawford
Client	CSIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	PO BOX 389 ALSTONVILLE NSW 2477	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	dane@csiaus.com.au	Email	au.environmental.sydney@sgs.com
Project	2216 East Lismore	SGS Reference	SE210304 R0
Order Number	(Not specified)	Date Received	24 Aug 2020
Samples	10	Date Reported	31 Aug 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

2 items

SAMPLE	SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 24/8/2020 Yes 13.7°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 10 Soil COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EL1	SE210304.001	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
EL2	SE210304.002	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
EL2D	SE210304.003	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
EL3	SE210304.004	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
EL4	SE210304.005	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
EL5	SE210304 006	L B207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
 FL6	SE210304 007	L B207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
FL7	SE210304 008	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
FL8	SE210304.009	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
ELO	SE210304.010	LB207639	19 Aug 2020	24 Aug 2020	16 Sep 2020	26 Aug 2020	16 Sep 2020	31 Aug 2020
Malatara Ocatarat	02210004.010	20201000	10 / ldg 2020	247/ldg 2020	10 000 2020	207/03/2020	Noth a del	
Moisture Content							Method: I	ME-(AU)-[ENV]ANUU2
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EL1	SE210304.001	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL2	SE210304.002	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL2D	SE210304.003	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL3	SE210304.004	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL4	SE210304.005	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL5	SE210304.006	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL6	SE210304.007	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL7	SE210304.008	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL8	SE210304.009	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
EL9	SE210304.010	LB207608	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	31 Aug 2020	28 Aug 2020
OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
FL1	SE210304 001	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
FL2	SE210304 002	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
FL 2D	SE210304 003	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
FI 3	SE210304 004	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
FI 4	SE210304.005	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
EL4 FL5	SE210304.006	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
ELG	SE210304.007	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
ELO EL 7	SE210304.007	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	20 Aug 2020
FL8	SE210304.009	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
ELO	SE210304.010	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	28 Aug 2020
	32210304.010	LB207010	13 Aug 2020	24 Aug 2020	02 3ep 2020	20 Aug 2020	03 001 2020	20 Aug 2020
OP Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EL1	SE210304.001	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL2	SE210304.002	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL2D	SE210304.003	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL3	SE210304.004	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL4	SE210304.005	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL5	SE210304.006	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL6	SE210304.007	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL7	SE210304.008	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL8	SE210304.009	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
EL9	SE210304.010	LB207610	19 Aug 2020	24 Aug 2020	02 Sep 2020	26 Aug 2020	05 Oct 2020	31 Aug 2020
Total Recoverable Elements in S	oil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analvsed
EL1	SE210304.001	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL2	SE210304.002	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL2D	SE210304.003	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL3	SE210304.004	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL4	SE210304.005	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL5	SE210304.006	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL6	SE210304.007	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL7	SE210304.008	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
EL8	SE210304.009	LB207632	19 Aug 2020	24 Aua 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020
FLQ	SE210304 010	LB207632	19 Aug 2020	24 Aug 2020	15 Feb 2021	26 Aug 2020	15 Feb 2021	31 Aug 2020

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	EL1	SE210304.001	%	60 - 130%	108
	EL2	SE210304.002	%	60 - 130%	107
	EL2D	SE210304.003	%	60 - 130%	111
	EL3	SE210304.004	%	60 - 130%	110
	EL4	SE210304.005	%	60 - 130%	106
	EL5	SE210304.006	%	60 - 130%	110
	EL6	SE210304.007	%	60 - 130%	111
	EL7	SE210304.008	%	60 - 130%	108
	EL8	SE210304.009	%	60 - 130%	106
	EL9	SE210304.010	%	60 - 130%	106
OP Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	EL1	SE210304.001	%	60 - 130%	101
	EL2	SE210304.002	%	60 - 130%	96
	EL2D	SE210304.003	%	60 - 130%	103
	EL3	SE210304.004	%	60 - 130%	100
	EL4	SE210304.005	%	60 - 130%	99
	EL5	SE210304.006	%	60 - 130%	109
	EL6	SE210304.007	%	60 - 130%	93
	EL7	SE210304.008	%	60 - 130%	101
	EL8	SE210304.009	%	60 - 130%	104
	EL9	SE210304.010	%	60 - 130%	99
d14-p-terphenyl (Surrogate)	EL1	SE210304.001	%	60 - 130%	96
	EL2	SE210304.002	%	60 - 130%	109
	EL2D	SE210304.003	%	60 - 130%	97
	EL3	SE210304.004	%	60 - 130%	111
	EL4	SE210304.005	%	60 - 130%	96
	EL5	SE210304.006	%	60 - 130%	128
	EL6	SE210304.007	%	60 - 130%	127
	EL7	SE210304.008	%	60 - 130%	100
	EL8	SE210304.009	%	60 - 130%	100
	EL9	SE210304.010	%	60 - 130%	95

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil				Method: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB207639.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB207610.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogate	es Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	107
OP Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB207610.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2

		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	100
		d14-p-terphenyl (Surrogate)	%	-	116
Total Recoverable Elen	tal Recoverable Elements in Soli/Waste Solids/Materials by ICPOES			Method: ME	-(AU)-[ENV]AN040/AN
Sample Number		Parameter	Units	LOR	Result
LB207632.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3

Surrogates	2-fluorobiphenyl (Surrogate)	%	-	100
	d14-p-terphenyl (Surrogate)	%	-	116
otal Recoverable Elements in Soil/Waste Solids/Mat	arials by ICPOES		Method: ME-	(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR	Result
.B207632.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-IENVIAN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil		
Original	Duplicate	Parameter

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE210304.010	LB207639.014	Mercury	mg/kg	0.05	0.06	0.06	117	2	
SE210350.002	LB207639.024	Mercury	mg/kg	0.05	<0.01	<0.01	200	0	

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210304.006	LB207608.011	% Moisture	%w/w	1	42.9	42.3	32	1
SE210304.010	LB207608.016	% Moisture	%w/w	1	26.5	26.4	34	0

OC Pesticides in Soil

OC Pesticides in Soil							Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210242.004	LB207610.020		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0	
		trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0	
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
	Sun	rrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.17	30	1
OP Pesticides in So	oil						Meth	od: ME-(AU)-	ENVIAN420

OP	Pest	icides	in Soil	

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210242.004	LB207610.020	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
	Surrogate	s 2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	3
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	11
Total Recoverable	Elements in Soil/Waste Solids/M	aterials by ICPOES				Method: ME	-(AU)-[ENV]AN	1040/AN320

Original	Duplicate	Parameter	Units I	LOR

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Fotal Recoverable Elements in Soll/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN						N040/AN320		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210304.010	LB207632.014	Arsenic, As	mg/kg	1	2	1	95	11
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	18	19	33	6
		Copper, Cu	mg/kg	0.5	19	20	33	5
		Nickel, Ni	mg/kg	0.5	7.6	7.9	36	4
		Lead, Pb	mg/kg	1	6	7	46	6
		Zinc, Zn	mg/kg	2	110	110	32	2
SE210350.002	LB207632.024	Arsenic, As	mg/kg	1	2	2	80	35
		Cadmium, Cd	mg/kg	0.3	0.4	0.5	97	15
		Chromium, Cr	mg/kg	0.5	23	24	32	2
		Copper, Cu	mg/kg	0.5	200	200	30	3
		Nickel, Ni	mg/kg	0.5	13	13	34	5
		Lead, Pb	mg/kg	1	12	11	39	7
		Zinc, Zn	mg/kg	2	61	57	33	7

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					1	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB207639.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	98

OC Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB207610.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	91
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	101
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	104
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	103
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	107
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	87
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	97
OP Pesticides in Soll Method: ME-(AU)-[ENV]AN42								
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB207610.002		Dichlorvos	mg/kg	0.5	2.5	2	60 - 140	123
		Diazinon (Dimpylate)	mg/kg	0.5	2.5	2	60 - 140	126
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	2	60 - 140	110
		Ethion	mg/kg	0.2	2.6	2	60 - 140	132
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	95
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	83
Total Recoverable Elements in Soll/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN32								vjan040/an320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB207632.002		Arsenic, As	mg/kg	1	310	318.22	80 - 120	98
		Cadmium, Cd	mg/kg	0.3	5.9	5.41	80 - 120	110
		Chromium, Cr	mg/kg	0.5	37	38.31	80 - 120	96
		Copper, Cu	mg/kg	0.5	280	290	80 - 120	98
		Nickel, Ni	mg/kg	0.5	180	187	80 - 120	95
		Lead, Pb	mg/kg	1	91	89.9	80 - 120	101
		Zinc, Zn	mg/kg	2	270	273	80 - 120	98

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE210304.001	LB207639.004	Mercury	mg/kg	0.05	0.20	0.05	0.2	73

OC Pesticides in Soil

OC Pesticides in	Pesticides in Soil Method: ME-(AU)-[ENV]/									
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%	
SE210242.001	LB207610.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-	
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-	
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-	
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	116	
			Aldrin	mg/kg	0.1	0.3	<0.1	0.2	127	
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-	
			Delta BHC	mg/kg	0.1	0.3	<0.1	0.2	132	
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-	
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-	
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-	
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-	
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-	
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-	
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-	
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	125	
			Endrin	mg/kg	0.2	0.3	<0.2	0.2	129	
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-	
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-	
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-	
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	81	
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-	
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-	
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-	
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-	
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-	
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-	
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.18	0.17	-	117	
OP Pesticides in	n Soil						Meti	nod: ME-(AL	J)-[ENV]AN420	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%	
SE210242.001	LB207610.004		Dichlorvos	mg/kg	0.5	2.0	<0.5	2	98	
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-	
			Diazinon (Dimpylate)	mg/kg	0.5	2.4	<0.5	2	117	
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-	
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-	

Meth		Methidathion	mg/kg	0.5	<0.5	<0.5	-	-				
			Ethion		mg/kg	0.2	2.7	<0.2	2	132		
			Azinphos-methyl (Guthion)		mg/kg	0.2	<0.2	<0.2	-	-		
			Total OP Pesticides*		mg/kg	1.7	9.3	<1.7	-	-		
		Surrogates	2-fluorobiphenyl (Surrogate)		mg/kg	-	0.5	0.5	-	103		
			d14-p-terphenyl (Surrogate)		mg/kg	-	0.5	0.8	-	95		
Total Recoverab	le Elements in Soil/Wa	aste Solids/Mater	als by ICPOES				Method: ME-(AU)-[ENV]AN040/AN32					
QC Sample	Sample Number		Parameter		Units	LOR	Result	Original	Spike	Recovery%		
SE210304.001	LB207632.004		Arsenic, As		mg/kg	1	36	2	50	69 ④		
			Cadmium, Cd		mg/kg	0.3	38	<0.3	50	76		
			Chromium, Cr		mg/kg	0.5	67	29	50	77		
			Copper, Cu		mg/kg	0.5	62	25	50	75		
			Nickel, Ni		mg/kg	0.5	49	6.5	50	85		
			Lead, Pb		mg/kg	1	48	6	50	84		
			Zinc, Zn		mg/kg	2	130	140	50	-18 ④		

mg/kg

mg/kg

mg/kg

0.2

0.2

0.2

2.3

<0.2

<0.2

<0.2

<0.2

<0.2

2

_

113

-

Chlorpyrifos (Chlorpyrifos Ethyl)

Parathion-ethyl (Parathion)

Bromophos Ethyl

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicative data, theoretical holding time exceeded and NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

APPENDIX 3 – HISTORICAL TITLE SEARCH INFORMATION

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE 26/8/2020 5:33PM

FOLIO: 21/793350

First Title(s): VOL 20/3 FOL 10/ VOL 2933 FO	DL 12
VOL 3376 FOL 185 VOL 1147 FO Prior Title(s): 121/787624 VOL 5251 FO	DL 227 DL 9
Recorded Number Type of Instrument	C.T. Issue
20/12/1989 DP793350 DEPOSITED PLAN	FOLIO CREATED EDITION 1
7/2/1990 Y851278 DEPARTMENTAL DEALING	EDITION 2
PRIOR TITLES(S) AS AMENDED: 121/787624, VOL 5251 FOLS	9-10.
19/2/1990 Y864294 DEPARTMENTAL DEALING	
17/4/1990 Y916322 DISCHARGE OF MORTGAGE 17/4/1990 Y916323 DISCHARGE OF MORTGAGE 17/4/1990 Y916324 TRANSFER	EDITION 3
7/1/1991 DP805680 DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

HAZ-MARK-

PRINTED ON 26/8/2020

Hazlett Information Services hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B(2) of the Real Property Act 1900. Date and Time of Search: Wed Aug 26 17:33:57 2020

© Office of the Registrar-General 2018

Level 4, 122 Castlereagh Street, Sydney 2000 | DX 1078 SYDNEY | GPO Box 96, Sydney 2001 Ph: 02 92615211 Fax: 02 92647752 | R Hazlett & Co. ABN 20 104 470 340 | www.hazlett.com.au

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE 26/8/2020 5:33PM

FOLIO: 1/728271

.

Fir	st Title(s) or Title(s)	: 1/728271 : CROWN LAND	
Recorded	Number	Type of Instrument	C.T. Issue
17/5/1989	DP728271	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
31/5/1989	DP728271	DEPOSITED PLAN	FOLIO CREATED CT NOT ISSUED

APPLICATION FOR RECORDING OF EDITION 1 6/7/1989 Y457740 ACTION AFFECTING CROWN HOLDING 7/1/1991 DP805680 DEPOSITED PLAN FOLIO CANCELLED

*** END OF SEARCH ***

HAZ-MARK-

PRINTED ON 26/8/2020

Hazlett Information Services hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B(2) of the Real Property Act 1900. Date and Time of Search: Wed Aug 26 17:33:31 2020

© Office of the Registrar-General 2018

Level 4, 122 Castlereagh Street, Sydney 2000 | DX 1078 SYDNEY | GPO Box 96, Sydney 2001 Ph: 02 92615211 Fax: 02 92647752 | R Hazlett & Co. ABN 20 104 470 340 | www.hazlett.com.au

FOR ENDORSEMENTS SEE PAGE 2

Governor

at Printer, New South Wales	Signature of	Registrar-General								<i>c</i>					
D. West, Governme								ANCELLATION							
		DATE													
	INSTRUMENT	NOGBER					Signature of	Registrar-General	-						
ßS							ENTERCO	CINIERED							
SCHEDULE OF REGISTERED PROPRIE	REGISTERED PROPRIETOR					STUENII E AF ENCLINEDANCES ETC									
								DATE					 		
x.							INSTRUMENT	NUMBER							
								NATURE							

781 № 19971

.ΙοΥ

(Page 2 of 2 pages)

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

-

Req:R554488 /Doc:CT 12651-184 CT /Rev:23-Feb-2011 /NSW LRS /Pgs:ALL /Prt:26-Aug-2020 17:37 /Seq:2 of 2

Req:R554481 /Doc:CT 01147-227 CT /Rev:31-Jul-2012 /NSW LRS /Prt:26-Aug-2020 17:36 /Seq:1 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

84 509-94 New South Wales. LAND GRANT. No. 94 669 NEW SOUTH WALES Five REGISTER BOOK, Thilling & 7 FOL. 22 TAME DUTY SYDNEY, N.S.W 28:11:44 (UNDER THE CROWN LANDS ALIENATION ACT OF 1861.) st 1061 FECCORES, by the Grace of God, of the United Ringdom of Great Britain and Freland, Queen, Defender of the Faith, and so forth :--TO ALL to whom these Presents shall come, Greeting :of Lismore W HEREAS of the office heren in Our Colony of New South Wales, claim , to be entitled, in respect of a purchase by Conditional Sale, without competition, under the / 3 1/1 Section of the Crown Lands Alienation Act of 1861, to the parcel of land hereinafter described; and the declaration as by law required has been made, and the Minister for the time being charged with the administration of the public lands is satisfied that all things required by law to be done to to a grant of the fee simple entitle the said poten phechan of the said land, subject to the reservations hereinafter contained, have been done and performed : and Whereas the sum of Dethy floureds sterling, being the purchase money payable for the said land, has been duly paid into the Office of the Colonial Treasurer of Our said Colony : Now Anow Dr. That for and in consideration of the said sum, for and on Our behalf well and truly paid into the Colonial Treasury of Our said Colony, before these presents are issued, and of all and singular the premises, We, for Us, Our Heirs and Successors, Do HEREBY GRANT unto the said h () Heirs and Assigns, subject to the of ofin shallan several and respective reservations hereinafter mentioned, ALL THAT piece or parcel of land in Our said Colony, containing by admeasurement be the same more or less, situated in the Porty acres and Parish of Lismore County of House Porfice XXVIII (28 of Parish) -Commencing on the left bunke of the Richmond This Deed is Cancelley and Cartificate of Vol. 4802 25 River at the South Western corner of portion XXVII (27 of Parish) of eighty acres and bounded thenes on the eventh by the Southern boundary of that portion 480206 Register learing East sitty five chains eighty links on the East ly a road one chain wide dividing it from part of XXVII 80a 32 (27 of Phi) portion thirty two of two fundred and ninety nine acres Richmond XXVIII 28 de Ph 400 66 50 Hire roods bearing Southerly six chains fifteen links 299a 3r 29 50aon the pourte by the exorthern boundary of portion twenty nine of fifty deres bearing West sitty six chains fifty Cinfes to the aforesaid river and on the West by that river upwards to the point of commencement Exclusively of The road one chain wide from Lismore to funduri mbd Scale 20 chains to an inch passing through this land in a pouth Easterly direction the area of which has been deducted from the total area -As per Plan in the margin hereof: with all the Rights and Appurtenances whatsoever thereto belonging: To Dold unto the said Votin phecheun Heirs and Assigns for ever: Subject nevertheless to the several and respective

reservations, hereinafter contained, that is to say: Probibit Nebertheless, AND WE DO HEREBY RESERVE unto Us, Our Heirs and Successors, all Minerals which the said Land contains, with full power and authority for Us, Our Heirs and Successors, and such person or persons as shall from time to time be authorized by Us, Our Heirs and Successors, or by the Governor for the time being, of Our said Colony, to enter upon the said Land, and to search for, mine, dig, and remove the said Minerals, with full right of ingress, egress, and regress, for the purposes aforesaid: Probibit Allso, AND WE DO HEREBY FURTHER EXCEPT AND RESERVE unto Us, Our Heirs and Successors, all such parts and so much of the said Land as may hereafter be required for a Public Way, or Public Ways, Canals, or Railroads, in, over, and through the same, to be set out by Our Governor for the time being of Our said Colony or some person by him authorized in that respect; AND ALSO all Sand, Clay, Stone, Gravel, and Indigenous Timber, and all other Materials, the natural produce of the said Land, which may be required at any time or times hereafter by the Government of Our said Colony, for the construction and repair of any Public Ways, Bridges, or Canals, or for Naval purposes, or Railroads, or any Fences, Embankments, Dams, or Drains necessary for the same, together with the right of taking and removing all such Materials: AND ALSO the right of full and free and regress, into, out of, and upon the said Land, for the several purposes aforesaid, or any of them : In Testiment Weberref, Our Grant to be Sealed with the Seal of Our said Colony.

WITNESS Our Right Trusty and Well-beloved Councillor SIR ROBERT WILLIAM DUFF, a Knight Grand Cross of Our Most Distinguished Order of Saint Michael and Saint George, Our Governor and Commander-in-Chief of Our Colony of NEW SOUTH WALES and its Dependencies, at Government House, Sydney, in NEW SOUTH WALES aforesaid, this fifteenth day of Automatic in the fifty- infinite year of Our Beign, and in the year of Our Lord one thousand eight hundred and ninety-feat

Req:R554481 /Doc:CT 01147-227 CT /Rev:31-Jul-2012 /NSW LRS /Prt:26-Aug-2020 17:36 /Seq:2 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

RECORDED and ENROLLED in the Registrar General's Office, at Sydney, in New South day of Decenter 187 Wales, this NO.9 76113 APPLICATION BY TRANSMISSIO Bridget theehan of timore, Registrar General. No @ 120776 evil of Eccentron dated 6th May 1932 M Produced and entered 13th Bay 1932 at 31 rule pet 9 Widow NOW THE RECIDTERED PROPRIETORS OF THE LAND WITHIN DESCRIPED IN PURCUANCE OF ABOVE APPLICATION. PRODUCED 30 august 1904 AND ENTERED 17 Aptember 1904 AT O O'CLOCK IN THE OFFICE NOON timo's onohap street O- clock in the forenoon Nº. C. 123644 Caveah dated 30th May 1932. Froduced and entered 1st June 1932 Sat 55 wets pt. 2 oclock in DEPUTY REGISTRAR GENERAL NO. 392579: GAVEAT DATED 13" September 1904 the afternoon acting Registrar Servera BY THE REGISTRAR GEI 17 Aptember O'OLOGK IN THE ... No B 125226 unit of Exection dated 10 heres 1922 IN Produced 13th June 1952 and entered so the fine 1982 at 10 oclock in the forewood . Mich drawal of above Caveat no 392579 Produced & entired the 21st day of november 1912. mon onohuo acting Register the at Ho clock in the afternoon Motkelianeral WITHDRAWAL of the within Caveat 28 June 1933 No. C188686 APPLICATION BY TRANSMISSION No. C123644 doted 28th June Produced 30th June 1933 and entered No. 28158 304 prary Catherine Collins urfeg Timethy pseph Collins of Lismore Harmer Produced piclock in the often noon. I.p. . I now the registered at_ w. willi Proprietars of the Land within described in pursuance of the above Application. Produced It Defilem ber 1912 and BEGISTRAR_GENERAL No. 0186296 Leave dated 9th June 1933 iron the said David Kirk Harten with concent of mortgagee to E brie May Anderson of Diamore Married Woman noon. Keleaul. REGISTRAR GENERAL. Produced 19 th June 1933 6th July 1933 APPLICATION BY TRANSMISSION clock in the after noon. enterza____ No. A 268201 elleus 11. Lisuere 1.9 cuithy relin 12___ now the registered REGISTRAR GENERAL Proprietors of the Land within described in puresance of the above Applies ion. Preduced for September 1916 and Sufficient evidence of the satisfaction of the within mentioned White of Execution door C 120776 + C 125226 has been furnished to me 11 A Detable 1516 10 o'clock in the yele- noch Dated 4th August, 1936 CHEGATEde C.459289 Filiaul Play to Unlis REGISTRAR GENERAL Registrar General No. A945555 TRANSFER, dated 19 Second be 1922 from the said Time thy Joseph Colling to David Kirk Martin of Sigherre Farmer The within mentioned LEASE No. C186296 _of the land within described has expired by effluxion of time Dated 14 th September 192 Vide CH71254 21st May 192 Produced and entered at 25 mbpt 10 o'clock in the for _noon. to willio SOUTH ailly EGISTRAR GENERA REGISTRAR GENERAL No. A 945559 MORTGAGE dated 16 4 1612 No. C_473911_DISCHARGE of within mortgage from the sold Savid Kirk Martin to Bank of Nº. A 945559 dated 28th July Producea and entered 23rd September 1936 1 Vent South Wale 1936 at H3 muts fast 2' clock in the_ after noon 1923 May Produced and entered TEAR 2 at 28 mbs fel 10 o'clock in the forest noon. Ry to undo Cled Dolly REGISTRAR GENERAL REGISTRAR GENERAL For Gancellation, sec Decrows post 11891

Req:R554484 /Doc:CT 03376-185 CT /Rev:03-Aug-2012 /NSW LRS /Prt:26-Aug-2020 17:37 /Seq:1 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

HEREBY RESERVE unto Us Our Heirs and Successors all Minerals which the said Land contains with full power and authority for Us Our Heirs and Successors and such person or persons as may from time to time be authorised by Us Our Heirs and Successors or by the Governor for the time being of Our said State to enter upon the said Land and to search for mine dig and remove the said Minerals with full right of ingress egress and regress for the purposes aforesaid Probiled also AND WE DO HEREBY FURTHER EXCEPT AND RESERVE unto Us Our Heirs and Successors all such parts and so much of the said Land as may hereafter he required for a Public Way or Public Ways Canals or Railroads in over and through the same to be set out hy Our Governor for the time being of Our said State or some person by him authorised in that respect And also all Sand Clay Stone Gravel and Indigenous Timber and all other Materials the natural produce of the said Land which may be required at any time or times hereafter hy the Government of Our said State for the construction and repair of any Public Ways Bridges or Canals or for Naval Purposes or Railroads or any Fences Emhankments Dams Sewers or Drains necessary for the same together with the right of taking and removing all such materials AND ALSO the right of full and free ingress egress and regress into out of and upon the said Land for the several purposes aforesaid or any of them In Testimony Whereof We have caused this Our Grant to be Sealed with the Seal of Our said State

WITNESS Our Trusty and Well-beloved SIR WALTER Edward Davidson, KNIGHT Commander of Our Most Distinguished Order of Saint Michael and Saint George, Our Governor of Our State of New South Wales and its Dependencies, in the Commonwealth of Australia, at Sydney, in Our said State, this twentieth day of October in the thirteenth year of Our Reign, and in the year of Our Lord Onc

thousand nine hundred and iwenty-two.

W. S. Davidry

Governor.

Req:R554484 /Doc:CT 03376-185 CT /Rev:03-Aug-2012 /NSW LRS /Prt:26-Aug-2020 17:37 /Seq:2 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

RECORDED and ENROLLED in the Registrar General's Office, at Sydney, in New South bet Wales, this octour 19 m day of Artheaus Registrar General. and Sufficient evidence of the satisfaction of the within mentioned Write of No. 1945558 TRANSFER dated 4" December 1922 from the said Simothy Joseph Collins to David C Dated ut & . C 120776 and C 125326 has been furnished to from the said Sime Kirk Martin Tismore Farmer Dated 4th Hugust, 1936. of the land within described Vide C 459289 By w willie (2121 May Produced and entered 1923 at 28 mb pt 10 o'clock in the noon. Registrar General E. A HTINSY monteaul) The within mentioned LEASE No. C186296 REGISTRAR GENERAL has expired by effluxion of time No. A 945559 MORTGAGE dated 15 April 1028 from the said David Kirk Martin to Bank of New South Wales Dated 14 th September 193 Vide CH71251 Don to Unlis REGISTRAR GENERAL Produced and entered 212t May 1923 RAR at 28 mbpt 10 o'clock in the fore noon. DISCHARGE of within mortgage dated 28% July 1936 No. C 473911 Nº. A 945559 REGISTRAR GENERAL Produced and entered 23rd Reptember 1936 at #3 mts fast 20' clock in the often nonn No 6 120776 whit of Execution dated 6th Bach 1932. Roy W Unlis Produced and entered 13 d May 1932 at 31 auto for 9 offer then REGISTR' D OTTER 14 in the afternoon forewood Nº C 123 644 baveat dated 30 th May 1982. Produced and entired May 1982 Aroduced and entired Ist June 1935 at 55 who pt 2. Ocloch in the afternoon This Deed is Cancelled and Certificate of Title issued No1.4802 Fol. 55' Roy to Unlis C480206 Registrar General acting Registrar No 6125226 whit of Experision dated 10 there 1932. Produced 13 th June 1932 and entered 20 th June 1932 at 10- oclock in the forenoser. Amon molice WITHDRAWAL of the within Caveat No. C 188 686 No. C123644 dated 20 th fune 1933 and entered 30 4 Producea'_ RARC 1 o'clock in the after noon. 1.50 POUTH WA REGISTRAR GENERAL 9 th June 1933 dated No. 6 186296 Lease from the said David Kirk Marten with consent of inortga gee) to Elaie May Anderson of dismore Married Woman (with consent of Produced 19th June 1933 and 6 th July 1933 'entered' RAR C ader 1 o'clock in the after noon. 14 W. willi J'h REGISTRAR GENERAL ev . 3.9

Req:R554483 /Doc:CT 02933-012 CT /Rev:31-Jul-2012 /NSW LRS /Prt:26-Aug-2020 17:36 /Seq:1 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

RESERVE unto Us Our Heirs and Successors all Minerals which the said Land contains with full power and authority for Us Our Heirs and Successors and such person or persons as may from time to time be authorised by Us Our Heirs and Successors or by the Governor for the timo being of Our said State to enter upon the said Land and to search for mine dig and remove the said Minerals with full right of ingress egress

and regress for the purposes aforesaid problem also AND WE DO HEREBY FURTHER EXCEPT AND RESERVE unto Us Our Heirs and Successors all such parts and so much of the said Land as may hereafter be required for a Public Way or Public Ways Canals or Railroads in over and through the same to be set out by Our Governor for the time-being of Our said State or some person by him authorised in that respect And also all sand elay stone gravel and indigenous timber and all other Materials the natural produce of the said Land which may be required at any time or times hereafter by the Government of Our said State for the construction and repair of any Public Ways Bridges or Canals or for Naval Purposes or Railroads or any Fenees Embankments Dams Sewers or Drains necessary for the same together with the right of taking and removing all such materials AND ALSO the right of full and free ingress egress and regress into out of and upon the said Land for the several purposes aforesaid or any of them In Testimon Withreef We have caused this Our Grant te be Sealed with the Seal of Our said State

> WITNESS Our Trusty and Well-beloved SIR WALTER EDWARD DAVIDSON, Knight Commander of Our Most Distinguished Order of Saint Michael and Saint George, Our Governor of Our State of New South Wales and its Dependencies, in the Commonwealth of Australia, at Sydney, in Our said State, this In the ninth year of Our Reign, and in the year of Our Lord One thousand nine hundred and nineteen

W. E. Dander

Guvernor.

Req:R554483 /Doc:CT 02933-012 CT /Rev:31-Jul-2012 /NSW LRS /Prt:26-Aug-2020 17:36 /Seq:2 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

DA. RECORDED and ENROLLED in the Registrar General's Office, at Sydney, in New South Sthe day of May Wales, this 1919. Reliand any 19 19 22 nd fa No. A +37240 4 MORTGAGE dated from the said Quiseppe Marozin To the Bank of Australasia Registrar General No. 4629195 TRANSFER dated - December from the said loseph faureau may yer (with co ana Produced 30th 301 entered 5th 19 19 RAR CE Firem the for the land within described Produced 6 th march 19 52 and entered gth mary g'clock in the noon 19:52 12 ____ of nonk in the REGISTRAR GENERAL. As to land in this transfer this grant is gancefied DISCHARGE of within Mortgage and new Certificate issued el Ba B_358/39 Vol 48 Fal 1926 14th may A. 43-1210 NEGISTRER BENERAL dated/ 1926 and entered Produced_ No. F596896 TRANSFER dated 12th June 1957 from the said each Saurence Magger (with consent of Mortgages) to Dudley Colvil arthur of Jundwimbar Tarmer of parti (sulfect to covenant) 1926 24th may at Ship st 2 o'dock in the after noon. of the kind within d scribed Filleni Produced 7th January 1952 and entored Ath may 1952 at_____ Ro'clock in the_____ noon. REGISTRAR GENERAL. As to land in this transfer this grant is sanced d and new Certificate issued APPLICATION BY TRANSMISSION No. \$ 388960 of Lismore Wedow Angelina Marozin O Vok 492 Fol 01 REGISTRAR GENERAL is now the registered Proprietors of the Land within described in pursuance of the above 1926 and Application. Produced It August This Lood is Cancelled and Certificate of Title issued 11 august 19 2 Vol. 6544 Fol. 26 entered_ noosi o'clock in the for residue Fleances WHHI'U REGISTRAR GENERAL OF650811 REGISTRAR BENERAL CAVEAT daied when No. B 38896 by the RegistrarGeneral. Produced and entered 19 26 1 hugust 12 o'dach in the noon. at -1991日 POUTHWA REGISTRAR GENERAL B 388961 is hereby withdraws. Tao within Causat No. ber 1936 11 th noven Bated____ The SOUTH REGISTRAR GENERAL No. CH8132.8. TRANSFER dated 30th September 1986 from the said angelina Marozin to Joseph Laurence Marza Goolmangar near 01 of the land within described. K Produced 20th October 1936 and entered 11th November 1931 o'clock in the after noon. REGISTRAR GENERAL. No. C 481329. MORTOAGE dates 17th October 1936 irgin the said Joseph Lawrence Mazzer to Produced 20th October 1936 and encered 11th November 193 o'clock in the after noon. * 3 10 REGISTRAR GENERAL

Req:R554482 /Doc:CT 02073-107 CT /Rev:30-Jul-2012 /NSW LRS /Prt:26-Aug-2020 17:36 /Seq:1 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

Subject nevertheless to the several and respective Reservations hereinafter contained that is to say **Probided Petertheless** And WE DO HEREBY RESERVE unto Us Our Heirs and Successors all Minerals which the said Land contains with full power and authority for Us Our Heirs and Successors and such person or persons as may from time to time be authorised by Us Our Heirs and Successors or by the Governor for the time being of Our said State to enter upon the said Land and to search for mine dig and remove the said Minerals with full right of ingress egress

and regress for the purposes aforesaid **Probibition Also** AND WE DO HEREBY FUETHER EXCEPT AND RESERVE unto Us Our Heirs and Successors all such parts and so much of the said Land as may hereafter be required for a Public Way or Public Ways Canals or Railroads in over and through the same to be set out by Our Governor for the time being of Our said State or some person by him authorised in that respect AND ALSO all Sand Clay Stone Gravel and Indigenous Timber and all other Materials the natural produce of the said Land which may be required at any time or times hereafter by the Government of Our said State for the construction and repair of any Public Ways Bridges or Canals or for Naval Purposes or Railroads or any Fences Embankments Dams. Sewers or Drains necessary for the same together with the right of taking and removing all such materials AND ALSO the right of full and free ingress egress and regress into out of and upon the said Land for the several purposes aforesaid or any of them In Testimony Elberrof We have caused this Our Grant to be Sealed with the Scal of Our said State

> WITNESS Our Right Trusty and Well-beloved FREDERIC JOHN NAPIER, BARON CHELMSFORD, Knight Commander of Our Most Distinguished Order of Saint Michael and Saint George, Our Governor of Our State of New South Wales and its Dependencies, in the Commonwealth of Australia, at Sydney, in Our said State, this in the first year of Our Reign, and in the year of Our Lord One thousand hine hundred and ten.

15

. . .

humper

Governor.

Req:R554482 /Doc:CT 02073-107 CT /Rev:30-Jul-2012 /NSW LRS /Prt:26-Aug-2020 17:36 /Seq:2 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

and the second sec RECORDED and ENROLLED in the Registrar General's Office, at Sydney, in New South Wales, this day of July 19¢0. No. A 418800 TRANSFER dated 18th October 1918. from the said Bank of Uw Louth Wales To Marion Angles where of John Lomes Deputy Registrar General. tughes. In No. C. 481328. TRANSFER water 30th September 1836 of the land within described. from the mit angelina, Marozin to Joseph Laurence and Marozin to Joseph ismore, I am Marzan for your angal near Produced and entered 28th October 1918. at some ft 3 o'clock in the afternoon. Produced 20th October 1936 and guered 11th November 1936 o'alach in the after noon. REGISTRAR GENERAL. No. A 422660 TPANSFER dated 1.9" Detoter 1918 Roy to Willio from the said marion Hughe's to quiseppe marogin of hismore Jakner REGISTRAR GENERAL No. C. 48/329. MORTGAGE aned 17th. October 19.36 irom the said Joseph Lawrence Mazzer to Commonwealth Bank of autholia of the land within described. Pipduced and entered 14 & promber 1918 at 16 mb M- 3 o'clock in the after noon. ellaul Produced 20th October 1936 and encied 11th November 1936 REGISTRAR GENERAL. a 3 o'clock in the after noon. No. A 437210 MORTGAGE dated 22nd January 1919 Lon W thele from the said quiseppe Marozin To The Bank of Australasia REGISTRAR GENERAL No. G 208247 TRANSFER dated 19th October 1954. Somethe said Joseph Lourence Magger (with Consent of most gagee) to george Ouver (lapeost Barclary of Liembre Banana Grower of fast No. G208247 Produced and entered 30th January 1919 at 31 mbs: fit 2 o'clock in the after noon. laul. of the land within described REGISTRAR GENEPAL. Produced 10th December 1954 and entered 26th June 1256 12. o'clock in _DISCHARGE of within Mortgage No. B. 358/39 As to land in this transfer this grant is cancelled and new Certificate issued A. 434210 dated 14/15 may 1926 1926 and entered Produced 24th hay 24th may 1926. REGISTRAR GENERAL. at 8 mh pt 2, of clock in the after noon. As to the residue this Deed is cancelled and new Certificate of Title issued Vol 1141 Fol. 137 Filleaux REGISTRAR GENERAL. Vide 06251532 APPLICATION BY TRANSMISSION Registrar General. No. 6388960 of Lismore Widow Augelina Marozin is now the registered Proprietors of the Land within described in pursuance of the above 1926 and Application. Produced 4 August 1926 11th august entered - De diclock in the noon. Dottilland) OUTH W REGISIRAR GENERAL. No. B 388961 CAVEAT dated 4 august 1926 Produced and entered by the Registrar General.

Req:R554495 /Doc:CT 05251-009 CT /Rev:07-Aug-2012 /NSW LRS /Prt:26-Aug-2020 17:37 /Seq:1 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

New South Wales. 201. Appn. No. [CERTIFICATE OF TITLE.] Reference to last certificate TENANCY IN COMMON Vol. 4802 Fol. 55 REGISTER BOOK. 5251 Fol. 9 Vol. CANCELLED R 72-1410 THOMAS JOHN GAHAN, of Meerschaum Vale, Farmer, Transferee under Instrument of Transfer No.D31386 is now 34 the proprietor of an Estate in Fee Simple in an undivided moiety or half share, subject nevertheless to the reservations and conditions, if any, contained in the Grantshereinaster referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in /that piece of land situated , and County of Rous Parish of Lismore in the Shire of Gundurimba containing Forty acres or thereabouts being Portion XXVIII (28 of Parish) originally granted to John Sheehan by Crown Grant dated the 15th day of November 1894 Volume 1147 Folio 227 .-Secondly that piece of land situated as aforesaid containing Eighty acres or thereabouts being Portion XXV11 (27 of Parish) originally granted to Timothy Joseph Collins by Crown Grant dated the 20th day of October 1922 Volume 3376 Folio 185. Which said pieces of land are shown in the plan hereon and therein edged red. Excepting out of the said pieces of land the road coloured brown in the plan hereon the area of which is not included in the above stated areas of 40 acres and 80 acres. In witness whereof I have hereunto signed my name and affixed my Seal, this Juverky Recent day of July, 1941. Signed in the presence of Whidgard Registrar General. North Richmond River (120 m²) VAR. WIDTH \$19910 APPLICATION BY XXVII(27Ph) Bede Gat and of Gundurin IZOAC. Proprietory of the land within described in pursuance of the above XXVIII(28Ph) Application 29 Produced 10t March 1953 and stered 18th March 1953 n' alaction THE PART POR. 27 UITHIN DESCRIBED IS LATI DP79924 Scale 20Chrs to one unch RECISTRAR GENERAL. D3/386 NOTIFICATION REFERRED TO NO. <u>F819911</u> CAVEAT dated 104 harch 195 by the Registrar General. Amongst the reservations and conditions contained Produced 10th March 1953 and in the Grants above referred to are reservations 1953 of minerals. 12. O'Glock int noon. to ulli 3.01 POUTH W ISTRAR GENERAL RegistrarGeneral. MORTGAGE dated abth gunge Ne. D31387 1941. F849508 DISCHARGE of within mortgage tron the said I hemas. John yahan and alor Verenica Wealth Bank of Australia D3138~ dated IQE. Jahan to commonule alth 1953 Produced 30th dume 1941 and entered 31st

Req:R554495 /Doc:CT 05251-009 CT /Rev:07-Aug-2012 /NSW LRS /Prt:26-Aug-2020 17:37 /Seq:2 of 2 © Office of the Registrar-General /Src:HAZLETT /Ref:HAZ-MARK-

Mortgage to Commonwealt TA410,90 No. 1-849509 the Bant australia 5 dang 194 Rosur 1200 leiding 1953 989-N9975 9 er TT Produced 11 RAR GENE Resi REGISTRAR GENERAL am RELISTRAR GENERAL No. F849510 MORTGAGE datad 20th physe 19. 53 Registered 8-12-89 DP/SP 793350 This folio is cancelled as to whole for upon creation 100 rent the sald G of computer folios for lots 20-21 in the ATK d lagan abovementioned plan. utered lith tha 1953 Produced 4th 100 12 BESISTRAN SEVERAL. has been discharged. F849510 MORTGAGE No. Entered to 1583 laras REGISTRAR GENERAL. les more, Buelding Contractor is Roberts. of alexander. 18 .now the registered proprietor of the land within described F LS83185 dated 10 th deftember. 19.69 See TRANSFER No. Encered 1st Octo --- 19 69 1:07 Jatas REGISTRAR GENERAL MORIGAGE dated to the detember 19 69 583186 Hession Davis of leanor. Former, and Deronera to 19.69 ist De Entered. Jakso REGISTRAR GENERAL AND AND 12-1974 No. N997559 Resumption of land for Public Road. Notice in Government Gazette dated 26th July 1974 Folio 2911 whereby and by operation of the Public Roads Act of 1902 the road shown in the plan catalogued R 34096 1603 in the Department of Lands and shown as firm lines and notation wide var width on the plan hereon (120m2) was declared to be a Public Road.

